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How can we heat
and cool baryonic
gas cloud ?

How stable is a gas
cloud ?
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How the first
galaxies formed in
the early Universe ?

How stars in
galaxies influence
the on-going star-

formation ?

How can we form a
collapsed object
from a gas cloud ?

What are the
properties of
galaxies ?
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The first 3 minutes of the
Universe

t=0s : the Big-Bang
t=10-36 to t=10-32s : inflation
- emission of gravitational waves

- emission of density waves
Guzzetti et al. 2016, arXiv: 1605.01615

History of the Universe
Cf;}'d;ﬁg'k’d f{‘f‘wt;‘%

\
4

Dersity Waves b s e three generations of matter interactions / force carriers
mhiot. Atitni - - (fermions) (bosons)

& mass =22 MeV/c* =1.28 GeV/c? =173.1 GeV/c* 0 =124.97 GeV/c?
A E: ¥ 0 0
Free Elecrors Eardest Trme U % C % t 1 g 0 H
Scatter Light Visdie with Light
up charm top gluon higgs

g =4.7 MeVic? =58 MeV/ic? =4.18 GeV/c? 0
) © 4 Y% -% 0
g E g d % S % b 1 ’Y

5 ¥
E g _§ down strange bottom photon
2 £ &
3 E _-_5‘_ =0.511 MeV/c? =105.66 MeV/c* =1.7768 GeV/c* =91.19 GeVic*

o

5 -1 -1 -1 0
g - % e u % T 1 Z

electron muon tau Z boson
001s 3min 380,000 yrs 13.8 Bilion yrs <1.0eVict <017 MeVic! <182 MeVic! ~80.39 GeVic*
of the Universe 0 0 0 £1
Age Ve % v}l % v‘l: 1 W
electron muon tau W boson

neutrino neutrino neutrino




The first 3 minutes of the
Universe

Resolution of current instrumentation :
1/1000 of the size of a proton.
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t=0s : the Big-Bang
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The first 3 minutes of the
Universe

t=0s : the Big-Bang
t=10-36 to t=10-32s : inflation
- emission of gravitational waves

GadstonalWaves . | , , - emission of density waves
Guzzetti et al. 2016, arXiv: 1605.01615

History of the Universe

" Polarization Signals - Universe mainly composed of quarks, leptons and photons

Density Waves

IIIFFEEEE ® . t=10"%s : formation of protons and neutrons, and then

O

i s formation of nuclei of deuterium, helium and lithium.

‘4
Free Elecrons Eardest Trme
Scatter Light Visdie with Light

t=3mn : the Universe is mainly composed of radiation, baryonic
matter, dark matter and dark energy.

- Electrons and nuclei are not bounded yet.
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The formation of the first stars
and galaxies
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The formation of the first stars
and galaxies

* Free electrons and protons start to be
bounded but as soon as they are hit by a

photon they become again unbounded :

et+tpeoS H+y

« When the Universe’s density is sufficiently
low to avoid interaction between photons
and particles (matter and radiation are
decoupled) :

* The first atoms are formed (Hydrogen,
Helium, Lithium)
 Photons can escape, and form the first

emitted radiation in the Universe : the
> Cosmic Microwave Background

Time
This epoch is called the recombination phase



The formation of the first stars
and galaxies

The temperature of the Universe at the
recombination epoch was ~3000K

'..° The redshift of the recombination
- epoch is z~1100

"‘.’r-,
-

"
‘v
R

- * Therefore, the observed
temperature of the CMB is today :
T~ 3000 _ 3000
1+z 1101

The CMB is observed at a frequency of
160.23 GHz




The formation of the first stars
and galaxies

* European Space Agency (ESA) satellite
* Launched by an Ariane 5 rocket in May 2009
* Diameter :1.5m
* Objectives:
* Map the Cosmic Microwave Background

 Measure the cosmological parameters
e Study galaxy clusters




The formation of the first stars
and galaxies

History of the Universe

After the recombination phase, the Universe Comtotored Woves
enters the Dark Ages iniation A TANAWALY
. . . Density Waves Pk «
Overdense regions continue to grow 1111313238 % ¢
Their density becomes sufficiently large that Froo Beckors ‘ T
their gravitational field is dominated by their cg '
g

own mass P i .
Their evolution is now driven by their own § § § 2

. el a- . < -
gravity (self-gravitating objects) and not the 3 : 2
evolution of the Universe (Hubble flow) § )
At the center of these overdense regions, the v i Vaaottetiune T s

gas cools and leads to the formation of the
first stars : this epoch is called Cosmic Dawn



The formation of the first stars
and galaxies

e The first stars are surrounded by neutral
hydrogen

* The first stars emit UV photons™ which will
ionise the neutral hydrogen, creating

+
bubbles of ionised hydrogen : this is the +ES+
epoch of reionisation @

+

WWW.ES0.0rg

* This will be discussed later in this course



The formation of the first stars

and galaxies

The first stars are surrounded by neutral hydrogen

The first stars emit UV photons™ which will ionise the
neutral hydrogen, creating bubbles of ionised
hydrogen : this is the epoch of reionisation

CMB observations by Planck reveals that the
hydrogen is fully ionised 1 billion years after the Big-
Bang (z=6)

The study of the first generation of galaxies shows
that they grow hierarchically by merging, leading to
an evolving distribution of galaxies of different
masses.

* This will be discussed later in this course
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Robertson et al. (2015), ApJ, 802, 19
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The “hunt” for the most distant galaxies
between 1950s and 2022

Humason et al. 1956
Minkowski 1960
Spinrad et al. 1975
Spinrad & Smith 1976
Smith et al. 1979
Spinrad 1982

Spinrad & Djorgovsky 1984
Lilly 1988

Chambers et al. 1990
Lacy et al. 1994
Petitjean et al. 1996
Franz et al. 1997

Day et al. 1998

Hu et al. 1999, 2002
Pello et al. 2004

lye et al. 2006
Fontana et al. 2010
Vanzella et al. 2011
Ono et al. 2012
Shibuya et al. 2012
Finkelstein et al. 2013
Oesch et al 2014
Zitrin et al. 2015
Oesch et al. 2016
Harikane et al. 2022



The arrival of the James Webb
Space Telescope
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The arrival of the James Webb
Space Telescope




The arrival of the James Webb
Space Telescope

GLASS-z13 (Naidu et al. 2022)

CEERS-DSFG-1 (Finkelstein et al. 2022)

SMACS-z16a (Atek et al. 2022)

Within a week, 11 papers have been

submitted using the first dataset from the
JWST to search for the first galaxies.




Summary of the formation of
structures in the Universe

Gas clouds with multi-phases

4  ,

dense regions

Low-density regions

Heating of

l collapsing gas

fast ci)oling
collapse / l \
Gas clouds | | Gas clouds Gas clouds
Protostar Protostar Protostar

The first part of this course will be to describe the

processes responsible for the cooling of the gas, the
heating of the gas and the formation of protostars.




Toolbox for this course

Euler’s equation Poisson’s equation
Adiabatic and inviscid flow Differential equation
d - pressure
av ., . *__p‘{ AD=V2p=Ff
p It +p(v-V)v=-V pVo,
\ f For the gravitational potential we can write :
Flow velocity Gravitational potential

_ o Ve, = 4mgp(r)
Equation of continuity

Conservation of some quantities . .
_ Density(mass/unit volume) Equation of state for an ideal gas

d

dt
\Flux:pﬁ ¢ \

Mass particle







Some definitions

The amount of energy (dE) passing through a surface

should be proportional to the size of the surface (dA)
and to the duration of the exposition (dt).

It is usually defined as :
dE = dF XdAxdt

The energy flux dF is measured in erg s1 cm

A source of radiation is isotropic if it emits energy
equally in all directions

By conservation of Energy, dE (r;) = dE(r,) then: ‘

F(r)4nri = F(ry)4nrf

F(r) =

F(ry)

e




Some definitions

Considering a surface normal to the direction of a
given ray, and considering all the rays whose
direction is within a solid angle d(}, then the energy

passing through the element dA is :
dE = I, dA dt dv dS)

where [, is the specific intensity (or brightness)

Iv

dA

If the surface is not perpendicular to the rays but has
different orientation, then
dE =1, dA dt dvcos 8 df)
= dE, dA dt dv

N.B. : If the radiation is isotropic, then [ dE, = 0



Some definitions

The specific energy density is the energy per unit
volume per unit frequency range :

dE = u,(Q) dV dQ dv

If we consider this cylinder, then dV = dA ¢ dT then
dE = u,(Q) dA cdt dQ dv
but within dt all radiation will pass out of the
cylinder, then :
dE = I,dA dQ dt dv

The specific energy density is defined as :

I
U, (-Q) = ?v

The mean density is defined as :

1
]v == E Ivd.Q

[ o
y

cdt

Integrating the specific energy density over solid
angles :

1
U, = juv(ﬂ)dﬂ = Ejl"dﬂ

4T
oru, = T]V

The total radiation density is given by

41
u= Juvdv :Tjjvdv




Radiative transfer

We use radiative transfer each time a
radiation is passing through a matter and add
(absorption) or subtract (emission) energy.

I- EMISSION

The spontaneous emission coefficient is defined as
the energy emitted per unit time per unit solid
angle per unit volume, such as :

dE =jdV dQdt

If the emission is monochromatic (e.g., an emission
line), we can define a monochromatic emission
coefficient :

dE = j,dV dQ dt dv

If the emission is isotropic, then :

JVZE v

where P, is the radiated power

We can also define the emissivity as the energy
emitted per unit frequency per unit time per unit
mass, and rewrite the transmitted energy in an
isotropic emission as :

dQ
dE = €,p dV dt dv v

For an isotropic emission, the relation between the
emission coefficient and the emissivity is given by :
€Evp
]V - 4 T

Considering a beam of cross-section dA traveling
through a volume dV = ds X dA , then the energy
added by spontaneous emission is :

dl, =j, ds

(Remember that dE = I, dA dt dv d())



Radiative transfer

We use radiative transfer each time a
radiation is passing through a matter and add
(absorption) or subtract (emission) energy.

II- ABSORPTION

The absorption coefficient is defined as the loss of
intensity in a beam as it travels a distance ds :

dl, = —a, I, ds

The absorption depends on the density of absorbers
along the travel of a beam.

If we assume a random distribution of absorbers,
each of them with a cross section g, and a density
per unit volume n, then the effect of these
absorbers on a radiation passing through dA within
a solid angle dQ is :

dE = —dl, dA dt dQ dv
or:dE =1,(ndAds og,)dQ dt dv

Therefore :
dl, = —noao,l,ds

We can rewrite the absorption coefficient such as :
a, =N o,

Usually, a,,is defined with the opacity (also known
as the mass absorption coefficient) such as :

Ay =P Ky



Summary of Monday's lecture

dE = I,dA dt dv dQ

+ dE = j,dV d2 dt dv

mmm dE=-no,dAdSI, dQ2dtdv



Summary of Monday's lecture

DEFINITIONS RADIATIVE TRANSFER

dA
The energy passing through a surface element

dA over a time dt is given by

dE = dFxdAxdt = I,,dA dt dv dQ
/ When a beam of light is passing through a surface dA light can
be added to the beam (emission by the material) or subtracted

We defined the specific energy density by : (absorption by the material)
dE = u,(Q) dV dv dQ

Specific intensity

", = I_v / \ Emission of light (adding energy to th.e beam) :
c dv = c dt dA dE = j,dV dQdt dv
We also defined the r;ean density by : Spontaneous emission coefficient/
Jv = E‘l’f I,dQ Absorption of light (subtracting energy to the beam) :
dE = —n o, dAdS I, dQ dt dv
The total radiation density is : LYJ
w=fuvdv ="y s sbtacts T bsarptn
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Radiative transfer

We use radiative transfer each time a
radiation is passing through a matter and add
(absorption) or subtract (emission) energy.

ITI- RADIATIVE TRANSFER EQUATION Exact solutions of the radiative transfer equation :
o _ _ _ * Emission only:ﬂ = Jy
The radiative transfer equation shows how the intensity of a beam ds
evolves.and includes contribution of spontaneous emission and D 1,(s) = L(sy) + fss i, (s")ds'
absorption. 0
We showed that :
i dr,
- Emission : dI, = j, ds * Absorption only P S —ay, 1,
- Absorption : dI,, = —n g, I, ds 2>1,(s) = I,(sg) exp[— f:o a,(s") ds']
Therefore :
dl, .
ds = —ayly t ], Outside of these simple cases, the resolution of the
radiative transfer equation requires numerical analysis




Radiative transfer

III- OPTICAL DEPTH AND SOURCE FUNCTION

The optical depth is a measure of the transparency of a medium,
and is defined as :

dt, = a,ds

Absorption
or by integrating : \ P

s coefficient
Ty(s) = f ay(s")ds’
S

0

By definition, a medium is said optically thin (or transparent) if a
photon can traverse it without being absorbed.

o
D g

* Optically thin: 7, <1 Filters used to observe the Sun are goo
* Optically thick : 7, > 1 of optically thick medium

xamples



Radiative transfer

dt, = a,ds
IV- OPTICAL DEPTH AND SOURCE FUNCTION i /
d_.;/ = Jv — &yl

The radiative transfer equation can now be rewrit"centoincl/
the optical depth :

b s

dTV - v 1%
where S, is the source function defined as : S, = é—"

We can demonstrate that the formal solution of this equation can
be written as :

L(t) =S, +e ™(,(0) —S,))



Radiative transfer

V- MEAN FREE PATH

The mean distance a photon can travel through an absorbing
material without being absorbed is the mean free path.

o
If we consider the photon mean free path as it tries to escape from ® ® °
an emitting region, and assuming 7,, = 1, we have : ® ® o
T, =a,s =1
then :
1 1
S =— = = lV
O o® ¢
A photon escaping from a region with an optical depth t,, will P ® .. ‘. 0® ¢ © o : o ©
undergo a random walk with N scatterings : ® ® PP .’ ® o e o®
L? e O @
_ 2 _ 2 @
L =.NL, = N~ ~(ayL)* = 7 ®
%




Thermal Radiation

Thermal Radiation is radiation emitted by matter in
thermal equilibrium. The best example is the black body
radiation.

The specific intensity depends only on the temperature of
the radiation, such as :

I, = B,(T)
where B, (T) is the Planck function, defined as :
2hv3 /c?

In the case of thermal radiation, the source function is
defined by :

Sy = By(T)
then j, = a, B, (T) Kirchoff’s law

The radiative transfer equation can now be rewritten as :

dl,
E = —a,l, + ava(T)
dl
or ﬁ =—I, + BV(T)

if DEFINITIONS

* Blackbody radiation : I, = B, (T)

* Thermal emission : S, = B, (T)

In thermal equilibrium

L,
=—L,+B,(T')=0
dTV v V( )

Hence

A\
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Example of Blackbody radiation :
* Cosmic Microwave Background

* Sun
* lava

The Wien’s displacement Ilaw gives the

wavelength of the peak :

A_b
T

where b is the Wien’s displacement constant
(b =2.898x10"3mK™1)






Thermal Radiation

Blackbody

/ enclosure

Considering a blackbody enclosure with a piston,

The first law of thermodynamics gives :
dU =dQ — PdV

where P is the pressure, Q the heat and U is the total
energy.

According to the second law of thermodynamics, we have :

dq
ds = —

where S is the entropy.

Radiation
pressure  In thermodynamics :

\ U = u V (with u the energy density)
u

° P=_
3

so that work can be done or subtracted to the From radiative transfer: u = [u, dv = 4Tﬂfjvdv

enclosure (the radiation).



Thermal Radiation

We can rewrite the first law of thermodynamics such as :
dU=TdS —PdV

U=uV \
ThendS = Z2 41 + 4y
T dT 3T

Since dS is a perfect differential, we can write :
L (Z) v

oT/)y T dT
L (B) =n

ov)r 3T

And then :
0%°S 1du _ 4u 4 du

gToV _ TdT _ 3T2 ' 3Tdrl

du 4u du dT
— = & — = 4_
dT T u T
integrating gives :
logu = 4logT + loga

and therefore :
u = aT* | Stefan-Boltzmann law

1
I :Eflvdﬂ

For isotropic emission : I, =J,, and in the case of a
blackbody radiation I, = B, (T), therefore :

4 41 41
u= juv dv =7j]vdv ZTJBV(T)dv = TB(T)

with B(T) = [ B,(T)dv = %T“ [tabulated 1]



Line emission

Statistical weight g;: the total number of states
possible with a given set of quantum numbers

Ez,gz = E1 + hVO

Ei 91

The energy difference between two levels is not
infinitely sharp, therefore photons with E =
hvg + AE with AE < hvg could also be
absorbed/emitted.

Ez,gz ®

Ei, 91

Spontaneous emission

emission absorption
Mean density \ /
1
Jo = gz a0 Jjy, = a,B,(T) Kirchoff’s law

EINSTEIN COEFFICIENTS

A, : transition probability per unit time for spontaneous emission
B, ] : transition probability per unit time for absorption

J=1" Jy®ydvwith [ ®,dv =1

B, ] : transition probability per unit time for stimulated emission

EZJQZ EZ)QZ ®

Ei, g: ® Ei, 9;

Absorption Stimulated emission




Line emission

In thermodynamics equilibrium :
absorption = emission
nyBio] = npAyy +nyByi]

where n; and n, are the number density of atoms of
level 1 and 2 respectively

Solving for J gives :
_  Ay1/By

) (B -

In thermodynamics equilibrium :

ng g1 eXp(_ k_T) g1 hVO

= = exp(
n, 5 exp(— E + hvo) g> k,T

In thermodynamics equilibrium : J;,, = B, ,and B, is
varying slowly with dv then ] = B, :

Ayq/Byq _ 2hv3/c?

(g;—g;i) exp (k};—VT) -1 B exp (%) —1

which gives, the following relations between Einstein
coefficients :

2hv3

—321

9g1B12 = 92821 Ay = 2



Summary of Friday's lecture

RADIATIVE TRANSFER

The radiative transfer equation can be written as :

b _ IL,+S
dTv_ 1% %

"

dt, = a,ds

l

Optically thin: 7, <1
Optically thick: 7, = 1

We defined the mean free path as
B 1 B 1 _
> a, no, '

THERMAL RADIATION

In thermal radiation, the specific intensity only depends
on temperature and is given by the Planck function :

2hv3 /c?
BV(T) = hv
e (kBT) 1
LINE EMISSION

We defined 3 Einstein’s coefficient :
- For spontaneous emission 4,4

- For absorption B,/

- For stimulated emission B,J



Summary of Friday's lecture

Question : Why the RTE uses I,, and we computed dI,, ?

dE = I, dA dt dv dQ dl, = j, ds




Line emission

The line profile function describing an emission We easily get the emission coefficient :
should be identical at the one describing absorption : . hvg
Jv = —ﬂn2A21¢(v)

| gsmav= [ ggrsav :
0 0

The total energy absorbed in dt and dV is given by :

We remind that the amount of energy emitted is hv 0

given by : —2n,By,dV dt j dﬂf J,@(v)dv
dE = j,dV dQ dv dt ATt 0

Each atom contributes to an energy hv, distributed hen, the energy absorbed out of a beam is :

over 41 solid angle, which can be expressed as :

hv
hv, dE = —>n,By,dV dt dQ J,®(v)dv
dE = (4—n) d(V)n,4,, AV dQ dv dt 4me

Remember that : dE = I,,(—a, dA ds )dQ dt dv

We easily get the absorption coefficient :
hv

Bip] with] = [" J,®,dv @ = M B1;6 ()




Before During Alter

Line emission _ ==& = =5 o

(1]
Stimulated emission is proportional to the ANNNA _
intensity, and only affects photons along hevdat shotes AF hu
the given beam, similar to absorption. L ’ NN\
Ground level i ——

Then we can consider stimulated emission E 1
as negative absorption, such as: Atom in Atom in

. hv excited state ground state

ayt = ——n;B,10(v)

41T

[':3 — I:] = AF = hv

Then the absorption coefficient, corrected
for stimulated effect is :

hv
ay = ECP(V)(TMBH —nyB34)




Line emission

Collision between particles is also an important
process producing emission lines.

Excitation/de-excitation of an atom can be

expressed as : ngCyq ; MNyCip Where ng is the
density of co/Hidfr'lg particles.

Usually collisions are dominated by electron-ions
collisions, then ny~n,

If the gas is in thermodynamic equilibrium :
E; Eq
neC7192 €Xp ( ) neC1291 €Xp ( )
kT kT

then :

g
Cip = g—2C21exp(—[E1 — E;/kyT)
1

Excitation by collisions is one of the main process in
astrophysical gas cooling (energy is dissipated by
radiation).

In a thermodynamic equilibrium : B
N1 (noCiz + B12J) = ny(ngCay + Ba1J + Azq)

If we assume that induced processes (absorptions)
are much less important than spontaneous and
collisions, then :

ningCyy = ny(Azg +npCyq)

or
n, nyCis 1
nq A21 1+Tl0€21
A21



Line emission

The line emissivity corresponds to the amount of The critical density above which the line is
energy emitted by the total number of atoms : predominantly collisionaly de-excited is :
€ = n2A21hV21 = n0n1C12h1/21 n(C)~A21/621
t 1+ noCaq
Tl_zz noCy2 1 A21
o An |y +n_zfi1] Generally :
- At low density : nyC,; <K 4,4 No~Ty X Ngpoms X T
€ = nony (v,
Every 1-> 2 transitions rise to a downwards 2-> 1
radiative transition Therefore :
- At high density : n,C,; > A5, « Atn <« n§: €, xn?
92 V21l e Atn »>n§: €,xn
€ ~ Ny —exp(— ) Az1hvaq 0- v
91 kpT

The emissivity depends on the co
exited level; many downwards transitions a

by collisions. Ciz = %6219Xp(_[E1 — E3]/kpT)
1



Line emission

Definition: In Astrophysics some process timescales are so
long that they can not be reproduced in laboratory. Some
emission lines, with an extremely small probability may be
detected in Space and not in laboratory : forbidden lines

Type of atoms Nature of line m

Dipole short permitted Ha A6563
Quadrupole long forbidden [0111]A5007
Intercombination intermediate Semi-forbidden  CI11]A1909

F(A) / F(5500)

F, (10™® ergcm™s'A™)

% L7 B [0 R I A LA B R CE I R L CE S R A IR
M82 _
d=12 million light-years :

3} /' |
- Ha j

2 | -

e ~p e

o.lllllllll‘llll‘lll|ll]jllll‘ll‘llll.

4000 4500 5000 5500 6000 8500 7000
Wavelength  (A)
Da Cunha et al. 2008

0.8 [CII] CII] :

0.6 e & 1

0.4 “L

0.2 ﬂ

ool [l

-0.2

-0.4 “ ‘

1.650 1.655 1.660 1.665 1.670 1.675
Observed Wavelength (um)

EGS-zs8-1 Stark et al. 2017
z=7.733
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Line emission

THE HYDROGEN ATOM

~

~
R

e 434 nm
! = 410 nm
8
7S ny

Balmer series

ro

2, Paschen series

The electronic energy states are determined by :

1 o ( 1 1 )
et \n2 m?
with R the Rydberg constant (R = 1.09x107m™1)

Young stars are UV emitters and emit radiation at
wavelength shorter than the Lyman edge (A=
91.1753 nm) =» the hydrogen around young stars is
ionized.

In the ionised gas, electrons recombine in H*from
upper levels, and then decay to the fundamental by
multiple transitions (and therefore multiple line
emissions)

The recombination rate is given by :
,Bi—>j = aj,j (T)npne

where a;_,;(T)
coefficient

is the effective recombination

The emissivity of a recombination line is given by :
€isj = hvi_,jai_vnpne



Line emission

CASE OF BROAD LINE REGIONS

A broad line region is a very compact region (<1lkpc)
surrounding an accreting supermassive black holes.

In this region, clouds are photo-ionised by strong UV
radiations emitted by the accreting black holes.

The mean density of these clouds is ~10*1cm ™1

Remember thatatn « n§: €, x n?

Consequently, the permitted and recombination lines are
much brighter than forbidden lines but also much brighter
than any other lines coming from the host galaxy.

Flux, AF(A) (arbitrary units)

- ' T Al LS
| Lya/NV
(1216 & 1240

- Civ
- 1549

SiIV/0IV]
1400

[Nelll]

3869 (o]
4959 & 5007 :
1 N § 1 M o || " 2 . " 1 PR T -p | (R St L
1000 2000 3000 4000 5000

Quasar Rest—frame Wavelength (&)



Heating and Cooling

As we will see later in this course, processes of To test the stability of this equilibrium, we can slightly
cooling and heating astrophysics gas are of central change the temperature from equilibrium temperature :
importance in the topic of structures formation. AT =T —Tg
The net heating rate (Q) is given by : Then the enthalpy of the gas is :

Qn,T) =T(n,T) — A(n,T) dAH a0

\ —= =0 = Qr, + AT (55 oy

But Q7. = 0 (by definition), then :

Total heating rate Total cooling rate dAH <0Q)
dt oT )\
The equilibrium temperature is the temperature at
which cooling rate equal heating rate.
The cooling time is defined as :

U

T, = —

A

where U is the thermal energy of the gas



Heating and Cooling

The cooling function A(n, T) provides a description
of the way the gas will cool considering all cooling
processes, and is then defined as :

A(T) = ZAi

The main cooling processes are :

* Cooling by lines emission

* Cooling by free-free emission in ionized gas
* Cooling by dust

* Cooling by recombination

I'l'\3 sec

-24

A(x,T)erg c
o

n
w

S,

Net cooling rate
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Heating and Cooling

COOLING BY LINE EMISSION

Remember that at high-density :
hv,4
X
91 kgT
and at low-density :
€ = NoNy C12hvy,

) Ay1hvyy

We also demonstrated that (relation between
upwards and downwards transition):

g
Ciz2 = _icz1exp(_[51 — E3]/kgT)

To be an effective cooling process (i.e, to get a high
Value Of ClZ) : AE NkBT

For hydrogen, typical AE < 10 eV, which means a
temperature of T ~ 104K

=21

16 22

6['
n
o

U
n
H

A(x,T)erg cm® sec™
o

S,
n
wm

Net cooling rate
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Heating and Cooling

COOLING BY LINE EMISSION

At lower temperature, several other atoms can be
used to cool the gas :

o C*(2Py), > 2Py :ATE 92 K

o Si*(2P1), > 2P3)) : ATE = 413K
. 0(3P292P1):A7E=228K

. 0(3P293Po):%=326|<

Focussing on C*, collisional excitation can occur via
collisions with electrons or hydrogen atoms. For

collisions with electron, the cooling rate is given by :

9
Acy = npn, . 8x10733T /2 exp(— T)]m‘35‘1

l‘l'l3 sec

A(x,T)erg c

Net cooling rate

) lo—ZG
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Heating and Cooling

COOLING BY FREE-FREE EMISSION

In hot (T>>10°K) fully ionised gas, radiation is
produced via Bremsstrahlung

Bremsstrahlung radiation is produced when a
charged particle is decelerated when deflected by
another charged particle. The moving particle loses
kinetic energy, which is converted into radiation.

The Bremsstrahlung emissivity is given by :

2 6
ff HoZ"e> mm 1 —  —RV/kgT
€, = 2 n.n;T 2e B

V' 3m2ceim? 6kB) e

eff —_ algffneniZZT_l/Ze_hv/kBT

where grr is the Gaunt factor and is tabulated.




Heating and Cooling

COOLING BY FREE-FREE EMISSION

We can determine the absorption coefficient linked to
the emission coefficient for free-free emission. We
remember that :

. €y
]V - 47_[
Jv = a,B,(T)
2h 3/,2
And B, (T) = —222-/¢
exp(k T) 1
ff
fr— _& ff_ MoZ%e® mm 1 —hv/kgT
Then a, 41 By (T) v = 3m2cefm? “6kp 2gprmenT zemhk
or
ff :uOZZ 6 mm 1 hv

a, )ngfnenv T 2(1—6 kBT)

24m3eim?h (3k

In the Rayleigh-Jeans limit (low energy) : hv < k, T,
therefore :

Then the absorption coefficient can be simplified as :

alt = Ay gsnen;Z2v 2T 3/2



Heating and Cooling

COOLING BY FREE-FREE EMISSION

Example of Hydrogen atom

Considering a cloud of fully ionised hydrogen at a
temperature T, and assuming that we are in a Rayleigh-

Jeans limit (i.e. hv K< kgT).

The coefficient absorption is given by :

alt = aygsnen;v 2T 3/2

Remember that the optical depth is given by :
T, = AyS

Then if L is the distance through the region, then :

! = a,grmeniv 2T 321

And in the case of an hydrogen cloud, then n;=n, :
o) = a,g,mZv 2T 3L

Numerical calculations show that :
gff o T0'15V_0'1

We have demonstrated earlier than :
I,=B,(T)(1—e"")

Which could be simplify in the two limits :
* Optically thin: 7, K 1 L, =1,B,
* Optically thick: 7, > 1 I, =B,

Therefore :
* Optically thin: 7, <1 I, < v 01
* Optically thick : 7, > 1 I, o v2



Optically thin: 7, <'1 I, < v 01

Heating and COOling Optically thick : 7, > 1 I, o< v?

I IIIIII] ] ] IIIITI]

COOLING BY FREE-FREE EMISSION

T =1 e
l —
Slope ~ = 0.1 T

Example of Hydrogen atom

llll]ll

The cooling rate is found by integrating the quantity :

cut - -

Ary = j €y v

Vo
Iy
Therefore : o1

2m—1/2 A =
Aff X nenl‘Z Te - i

: dA . o : i

Given that o > 0, if the heating is constant, this -
results into a stable cooling process. i <— Slope ~ 2.0 |

0.01 1 L 1 1 Ll 1 ll 1 1 1 1 L1l 1 ll

0.1 1 10



Summary of Monday's lecture

EMISSION LINES IN THE CASE OF A BROAD LINE REGIONS

o N

Narrow Line Region (NLR)
l'I |
' Torus l &
\ | SMBH
\ /

\ /  Broad

U Line Region

(BLR) Accretion
disk

| 11 |
10-100
Few parsecs light days




Summary of Monday’s lecture

EMISSION LINES IN THE CASE OF A BROAD LINE REGIONS

208 2.06 207 208 209 210 2.1)
Observed wavelength [pum)

Ramos-Almeda et al. (2019)



Summary of Monday's lecture

COOLING AND HEATING

Hydrogen is efficient We defined the cooling function A(n,T) as :
only at T > 10*K, at :
Y By_lmle A(T) = ZAi
lower temperature C emission _
l
anc_j O are more where A; is the cooling function for individual process
efficient.

For hot and fully ionised H-
gas (> 10° K), if the
heating is constant, the
cooling is a stable process.



Heating and Cooling

COOLING OF MOLECULAR GAS

In the cool molecular phase of the ISM, the
excitation conditions for rotational transitions of
molecules are matched to the typical temperature of
molecular clouds.

From your Quantum mechanics course, you know
that :

hZ

— = + 1)B

The Einstein A coefficient for a rotational transition
can be written as :

E°" =]+ 1)

2

81 3 5 2
Apm = 3 el Zyve|< n|ldm >

The molecule must have a permanent dipole (to
justify the rotational transition) azu, then for
J+1->] transition, we can quote the result of QM :
8m? s . Jt+1
A1) = gpaz VI g

The energy spacing between the level is :
hV]+1J - ZB(] —+ 1)

H, is the most abundant molecule in the Universe,
but it has no permanent dipole, hence it cannot have
transition A/ = +1, it can only undergo quadrupole
transition AJ] = £+2, which corresponds to excitation
temperature T>500K (A — mid-IR)



Heating and Cooling

COOLING OF MOLECULAR GAS

However, molecules with dipole transitions exist in
the Universe :

[

12C0 =150 11527 GHz
12C0 ] =251 230.54 GHz
cs J=1-0 48.99GHz
NCN J=1-0 86.63GHz

All these transitions are excellent coolant of the cold
molecular phase of the ISM

COM1-60 s AFRCS LUl (s=2 00l

Riechers et al. 2020



Heating and Cooling

COOLING BY DUST

Dust is an important component of the ISM. It
accounts for

- 50% of the heavy elements
- 1% of the baryonic mass of a galaxy

- 40% of the luminosity of a galaxy

Dust grains are produced by stars at the end of their
life (e.g., after SNe). Their size is ranging from 1nm to
1um with a mean size of about 0.1 um. This explains
why dust grain absorb mainly at optical wavelength.

The smallest dust grains are just large molecules
such as PAHs, the larger are amorphous grain of
silicates and carbon, but with an icy surface layer

ANDarev ece

Bens e gryere

Fucrarmhherwe
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B
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Heating and Cooling

COOLING BY DUST

The main consequences of dust in the ISM are :
- Absorption at optical wavelength (extinction)
- Radiates thermally in the mid- and far-infrared

- Acts as catalysts for chemical reaction in the ISM and the formation
of large molecule

- Can also scatter photons elastically

Consider a dust grain of radius a and assume that dust scattering does
not contribute to dust heating, then only absorption is considered. The
absorption coefficient of a spherical grain is then given by :

Xext (V) — ng Oext (Vr a) — ng Qext (Vr a) Oq = ng Qext (Vr a)naz

where Q. (v, a) is the efficiency of extinction

The extinction coefficient can be expressed as :
Qext = Qabs + Qsca

The power absorbed by a single grain from an
incident radiation ﬁeld E, is given by :

Paps = f F,04Qaps(v, @)dv
0

At equilibrium, the emissivity is given by :
€ = 4mj, = 4na, B, (T,)

Hence, for a single grain the power radiated is :
+ 00

Praqa = 47-[[ 04Qans (v, @)B, (Tg)dv
0

And in equilibrium : Pyps = Prgg



Heating and Cooling

COOLING BY DUST

For typical dust : T, o Fl/5
Since F = 4nR2, then :
T 9[K] ~ 40L55 R, 2/

Typically, dust heated by UV emission
reaches temperature of 100K in star-
forming regions.

If there is a significant amount of dust,
then the ISM is optically thick and leads in
efficient cooling.
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Heating and Cooling

RADIATIVE HEATING AND COOLING BY RECOMBINATION

Photons with energies greater than the ionisation potential
of a species lead to the ejection of an electron with energy

hv—Il-

This electron can then heat the gas via collision processes.

Some of the electron kinetic energy will lead to excitation of
electronic levels, and subsequently re-radiation and hence no
heating of the gas.

Considering a cloud of pure hydrogen.

The ionisation rate is given by :

nH%‘* O;j
\onisation cross-section

lonising photons flux

In  equilibrium, ionisation rate must equal the
recombination rate :
nyS.0; = ntag

where aj is the net recombination coefficient and n, = n;

The heating rate is given approximately by :
T = nHS*O-l(hﬁ — IH)

where [y is the ionisation energy of hydrogen and
hv — Iyis the mean energy of ejected electrons.

o .3 :
The mean kinetic energy per electron is ngTE, and is lost
on recombination, hence the cooling rate is :

A = ngaB EkBTE



Heating and Cooling

RADIATIVE HEATING AND COOLING BY RECOMBINATION

Equating heating and cooling rate gives :

nHS*O'l(hV - IH) = ngaB EkBTe

therefore :

T
¢T3 kg

If the ionising flux is coming from a central star, then the
emission can be approximated by a thermal emitter of
temperature T, , and a reasonable approximation is that

Then :

2
T~3T.

Typically T,~3%x10* — 6x10*K giving T,~4x10* — 8x10%K

- In aionised gas : heat via collisions

- In a neutral gas : heat via inelastic collisions (hydrogen
emission lines escaping the cloud and not contributing to
the heating of the gas)

Similar arguments can also apply to the heating by X-Rays
and Cosmic Rays which ionise principally hydrogen, and the
emission of photo-electrons from dust particles.

MECHANICAL HEATING

Main processes :
Heating in shocks
Heating in viscous accretion discs

In a strong shock all of the kinetic energy is converted into
internal energy.



Summary of cooling processes

COOLING AND HEATING In ionised gas, the
energy of free

electrons will heat

Hydrogen is efficient We defined the cooling function A(n, T) as : .

4 the gas by collisions.
onlyatT > 107K, at By line A(T) = ZA 8 . Inaneutral gas, we
| pE - L bination ’
ower temperature C emission : recomoinatio have inelastic

l
a]:f' 'Or?tre ACIE where A; is the cooling function for individual process collisions leading to
emcient. 8 photons emission
sy (and no heating)

Molecular
gas

Dust grains absorb UV light and
re-radiate in FIR. If the dust
content is high, then cooling by

P
<

For hot and fl;lly |o.n|sed H- qulmg of molecular gas is <.ju.e to rotational dust is very efficient
gas (> 10° K), if the transitions, which are more efficient for molecules
heating is constant, the with a permanent dipole. Then H, is not the main
cooling is a stable process. responsible for molecular gas cooling. Other

molecules with permanent dipole (e.g., CO)
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The multi-phase ISM

log 7
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Then we conclude that clouds of hydrogen are
composed of warm and cold phases (multi-phase

medium).



The multi-phase ISM

CAN WE EXPLAIN MOLECULAR CLOUDS IN THIS WAY ?

Properties of Giant Molecular Clouds :

Typical masses : M~10°Mg
Radius : R~50pc

GM?
T

Gravitational Energy E;~

Thermal Energy E} ~ % (i) kgT

mpy

Therefore :
E, _ GMmy _

Ek TkBT
=>» The gravitational potential energy is much higher than

the thermal energy meaning that such clouds are self-
gravitating.

100

For the hot ionised phase, it is useful to calculate the

cooling time :
Ey

A

Cooling at ~5x10°K is dominated by line emission from
collisionnaly-excited ions and :

Tc

—0.6
A~ 1.6x10735n,n; (=) Wm?

06

Then the cooling time for the gas with n,~3x103m?3:

3 —
7, = Lo ~4><106( d )1'6( 2 ) 1yr
¢ A 5x10° 3%x103

The gas does not need a constant heating source, but still
cools quickly on timescale (1 million years) much shorter
than those over which a galaxy evolves (~billion years).

The gas can cool rapidly especially in denser regions, and
then condense to one of the denser phases.



The multi-phase ISM

m-

Molecular >300

Cold neutral 50 80 3.0
Warm neutral 0.5 ~5000 2.0
Warm ionised 0.3 10 000 ~0.2
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Equations of hydrodynamics
and hydrostatic equilibrium

TOOLBOX FOR THIS CHAPTER

Euler’s equation governs adiabatic and inviscid flow :

-

dv —
P +p(w-V)v = —-VP —pVd,

PR

Density of Flow Pressure Gravitational
the fluid velocity Potential

In equilibrium v = 0, then :
—VP — pVd, =0

Poisson’s equation gives the gravitational potential :

Ve, = 4nGp

The equation of state for an ideal gas gives the
pressure :

knT
P:PB
U

The equation of continuity

dp
4 V. =0
T (pv)

We also need an equation describing the energy flux
but if we use the general form, we will not be able
to solve the equations analytically. Approximations
are needed !



Hydrostatic
equilibrium
(v=0)

The isothermal sphere >

d —
P +p(w V)v = —VP — pVd,
The simplest model in which pressure and gravity .
allow stable configuration is the isothermal sphere.

In this model, we assume : The gravitational potential and the pressure are only
- a spherical symmetry function of the radius 7, then the Euler’s equation can
- a gas at a uniform temperature T be written as :

kgT
- the equation of state given by : P = pi = azp 1dp  d%, _
where a# is the isothermal sound speed p dr  dr

and the Poisson’s equation :

1d ,dd,
In spherical coordinates (, 8, @), the gradient is 23 r? 7 = 4nGp
given by : . 5 . r-ar r
1 > 1
Vf = —fF + ——fe + I %

dr rdo rsinQdcp(P

In spherical coordinates (r, 8, @), the Laplace operator is given by :

P _16(26f>+ 1 ( 06f>+ 1 9%
f= f_rz or r or/) 12sinf 06 Sin d8/  r?sin? 0 dp?




The isothermal sphere

The equation of state (P = pk%tT = a%p) can be

SINGULAR ISOTHERMAL SPHERE S S d p GM p

2
. . . . r
In the following we assume an isolated single isothermal ar

sphere, and we will try to get the solution (pressure, Then :
mass, radius) d lnp /

The gravitational force is given by : Taking the radius derivative gives :
_ GMp d( ,dlnp G dM
v, = M (- )___2_
4 dr dr ag dr
1 dP dCD s - ,
Then, from the Euler’s equation we get: pdr  dr with —= = 4mr<p, then
dP GMp d<2dlnp)_ G
- _ —\r = ——4711” P
dr T2 dr dr as
where the mass M, is the mass within a radius r : The exact solution of this equa;uon IS :
— _ (7 ! 12 3o _ar
M=M() = [, p(r')4mr'?dr p(r) = Sz




The isothermal sphere

SINGULAR ISOTHERMAL SPHERE

From the previous equation, we can determine :

* The total mass of the cloud
"o 2 2a2r
T _ppr2dr = —L°

M(ry) = d

(ro) jo 2Gr? G

* |n equilibrium, there must be an external pressure
equaling the pressure at the surface of the cloud :
ar

2nGry

* The cloud radius and isothermal sound speed can be
estimated from the Mass and external pressure

Py = a%P(To) =

* Although the density and pressure diverge atr — 0,
the total mass, internal energy, etc.. are bounded

af
2Gr?

p(r) =

r
M(r) :j p(r4nr'?dr’
0

Singular sphere because the density
and pressure diverge at r=0



The isothermal sphere

The equation of state (P = pk%tT = a%p) can be

SINGULAR ISOTHERMAL SPHERE S S d p GM p

2
. . . . r
In the following we assume an isolated single isothermal ar

sphere, and we will try to get the solution (pressure, Then :
mass, radius) d lnp /

The gravitational force is given by : Taking the radius derivative gives :
_ GMp d( ,dlnp G dM
v, = M (- )___2_
4 dr dr ag dr
1 dP dCD s - ,
Then, from the Euler’s equation we get: pdr  dr with —= = 4mr<p, then
dP GMp d<2dlnp)_ G
- _ —\r = ——4711” P
dr T2 dr dr as
where the mass M, is the mass within a radius r : The exact solution of this equa;uon IS :
— _ (7 ! 12 3o _ar
M=M() = [, p(r')4mr'?dr p(r) = Sz




The isothermal sphere

SINGULAR ISOTHERMAL SPHERE

From the previous equation, we can determine :

* The total mass of the cloud
"o 2 2a2r
T _ppr2dr = —L°

M(ry) = d

(ro) jo 2Gr? G

* |n equilibrium, there must be an external pressure
equaling the pressure at the surface of the cloud :
ar

2nGry

* The cloud radius and isothermal sound speed can be
estimated from the Mass and external pressure

Py = a%P(To) =

* Although the density and pressure diverge atr — 0,
the total mass, internal energy, etc.. are bounded

af
2Gr?

p(r) =

r
M(r) :j p(r4nr'?dr’
0

Singular sphere because the density
and pressure diverge at r=0



Summary of the isothermal
sphere

Singular Isothermal sphere

dv. = — T=cst Vid, = 4nGp
pE+p(v-V)v=—VP—de>g s
) o Hydrostatic equilibrium

:};)dl‘(%St?th ec;q:/:t;r/um Spherical coordinates
pherical coordinates

1dP do 1d ,d% _

- 9_0 i 4tGp

Cpdr  dr r2dr  dr

az 2 ar
— — 'r‘
p(r) = G2 Py = a7p(ry) = 7 Groz

These solutions (p(r) and P(r)) diverge atr — 0
Good description of the problem whenr > 0




The isothermal sphere

GENERAL SOLUTION

The Euler’s equation gives :

1dP do, B
pdr dr
with P = a%p, then :
ardp dd,
p dr dr
Integrating gives :
by
—Inp = —+cste
ar

Or:

()
p(r) = p. exp (— E E”)
/ ar

pc=pr=0)#0

To simplify the analysis, we need to introduce
dimensionless variables :
47TGpC>1/2
r

_Cbg d & =
l/}_a% an f— a%

The the Poisson’s equation becomes :
1 d £ dy _ v
§2d¢” d§

The solution of previous equation is :

2
o

VD, = 4nGp



The isothermal sphere

GENERAL SOLUTION

The boundary solutions we can assume are :

- No gravitational force at the center of the cloud :

d
(@) ="
dé £=0
- The density at the center of the cloud must be

P, thenyp(§ =0) =0

No analytical solution, equation must be
integrated numerically.

However, we can estimate the total mass of the

cloud :
To

M(ry) =f panr2dr
0

Introducing the dimensionless variables gives :

2 3/2 &,
M(ro):47tpc< & ) j e~VE2dE
0

4G p,
Then_: -
2 2
aT ( 2 dlp)
M = 4 _r

There is one more parameter compared to the

singular solution : p. , and we need to also specify
2

ar, Ty



The isothermal sphere

4
T
(3)

M/a

GENERAL SOLUTION

3
2

G

1
2
0

p

We can also study the mass of the cloud as a

function of the density contrast defined as S 10 ]
pc/Po , where py = p(rp) |
2 |
. . S
There is a maximum cloud mass (m,) for g
o oMo c o
which equilibrium can be reached. IS
z -
(7)) |
Q
C
o) |
m -4
[
()
£
© 0 1 1 L N R S | 1
0 1.0 2.0 3.0 4.0

Density Contrast log (p./po)



The polytropic

The equation state of the plolytropic sphere is :
P=Kp'*n =Kp’
where n is the polytropic index :

- n=0 for rocky planets
- n=1.5 for star cores

For the general polytropic case, we will
demonstrate in problem sheet that the

temperature always follows the gravitational
potential :

r
kpT = ——ud®g

sphere



Virial equilibrium for the self-

gravitating sphere

In the following, we will test if the solutions we find for the isothermal
sphere are stable.

The equations of hydrostatic equilibrium are :

ar_ GMp

dr 12
and

dMm 5

I = 4nrep

To simplify, we will consider the mass as an independent variable, such
as:dr = then:

amtr2p’

GM
Antr3dP = —4nr GMpdr = _TdM

V=Vo,p=po Mo oM
—> j 3VdP = — J —dM

V=0,p=pc¢ 0

External medium




Virial equilibrium for the self-

gravitating sphere

V=Vo,p=Do Mo oM
[ ap = — [ g
V=0,p=p, o T

To solve the previous equation, we need to integrate by part :
| uw dx = v - [ wepe
a a
Therefore, we obtain :

Vo,Po Mo oM
3[PV]ePe — 3 f PAV = — f —dM
0 0

inC
/ D¢ T\

3P,V, = 471 P, Gravitational

potential ()
—> Mo p
J
0

;dM + Q = 4nrg P,

Equation of virial equilibrium

External medium




Stability of an isothermal cloud

Mop
3J —dM + Q = 41 P,
o P

For an isothermal sphs{re, we know that : P = a%p, hence :

op 5 kgT
3] —dM = 3a;M, = 3—M,
o P U

We also know that :

3GM¢
Q=—=
5 1y
Then the virial equilibrium equation for an isothermal cloud becomes :
kT 3GM; ;
3_M0__ —47TT0P0=0
U 5 1y

/ ] Associated with

Associated with Associated with

_ external pressure
thermal pressure gravity

Stability conditions

- If =0 =» equilibrium

- If <0 =>» external pressure and gravity are
“stronger” than thermal pressure : the cloud is
collapsing

- If >0 =» the thermal pressure is larger than
external pressure and gravity : the cloud is
expanding.



Stability of an isothermal cloud

The external pressure P, is given by :
3kgTM, 3 GMS

P = —
o(r) Amr3uy  20m rt
The maximum of this function is given by :
dPy(r) _ 4 GMgu

dr  meX T 5 T

with a maximum pressure of :

kgT\* 1
Pmax:Cg( u ) G3Mg

Stability of the cloud of mass My and with r > 75,4, :

Py

- If the external pressure is increased by a small amount, the system will lie above the equilibrium line, then the virial

equation shows that the cloud must shrink.

- If the external pressure Py > P, the cloud is not stable and can’t find any radius at which it will be in equilibrium : the

cloud is collapsing.



Stability of an isothermal cloud

_ (kgT\* 1
Fnax = Cg( u ) G?’Mg ¢§'1.5 T T e T T T m—
. . \
For a given external pressure, a cloud will become =
. 3ol Ha\
unstable to collapse when its mass exceeds : &
1IN O
Sy

M = 12 (kBT)Z 1 1/2 a}
g U G3/2P3/2 g pg/2G3/2

Bonnor-Ebert mass

Consider a cloud with a given p./p,, if we increase the
external pressure then :

1 3

- The dimensionless mass will increase (m = p(Z)GEM/cGE )

- For stability the internal pressure of the cloud must
increase

dimensionless cloud mass m
Py

:J - A A I ___L_,,‘J.-,,_,l 1 i
0 1.0 2.0 3.0 4.0

- But at constant T, this requires p in the cloud to
increase and hence p,

Density Contrast log (p./po)



-

dv

Jeans instability G+ PG T = TP — pTe,

PERTURBATION ANALYSIS OF
FLUID EQUATIONS

Initial conditions of the system (the fluid is stationary) :

C UO == 0
* po = cste
e P, =cste

Introducing perturbed quantities :
* p=potps
* V=7 + V1
« D, =Dy + Dy
« P=Py,+P

As previously, the unperturbed potential is assumed to
satisfy :
VZCI)O = 4‘7TGp0

VD, = 4nGp
There is no solution when p, = cste

The equation of continuity given by :

dp
E-I_ V.(pv) =0

becomes (to first order):
dp;

po(V.v1) = e

Similarly, the other hydrostatic equations (Euler’s & Poisson’s)
become :

My ! op
at - ¢1 pO 1
And
Vi, = 4nG p,

We also assume isothermal behaviour such as :
_ 2
P, = arp,



Jeans instability

PERTURBATION ANALYSIS OF

FLUID EQUATIONS

Differentiating the continuity equation with respect to

time, we obtain :
1 9%p,

9,
E(v'vl) — _% atz

Taking the divergence of the Euler equation :

0 as
—(V.1;) = —V2¢p; — —L V2
at( V1) ¢4 o P1

Combining the two previous equation gives :

1 0% 4nGp,
vz — + =0
( aor? " al )’”

‘ similar to the wave equation !

po(V.v7) = — ¥
0v1 v VP
at - ¢1 0 1

Therefore, we should look for wa\ie-like solutions of the form :
Py ei(k.?—wt)

which gives a dispersion relation :
azk? — w? = 4nGp,

The system is unstable when the modes grow (i.e. w? < 0).

Hence we can define a critical wave number (when w? = 0) :
, 4mGpy 4mGu

7 a2 kgT a
And a characteristic wavelength : .
T

kj




Jeans instability

PERTURBATION ANALYSIS OF
FLUID EQUATIONS

The total mass within a sphere of diameter equal to

the Jeans wavelength 4; is :

4 ()’
My=3m|% ) Po

Moreover :

Then :

2
J

2 — <2TL’)2 _ mkgT
k; Gupo

2 w2 kgT

For A > A; or M > M; the modes grow exponentially : the cloud

is collapsing

The Jeans Mass is the mass above which gravity dominates.

The Jeans mass is usually defined as :

Mg

Strong dependance
on temperature

M, T
— = 1.0% (—

10

3/2

% (le(;lﬁ’m‘3)

~1/2

Importance of cooling which
could reduce the temperature
and therefore allow the
collapse of less massive clouds



Jeans instability

PERTURBATION ANALYSIS OF
FLUID

In the early Universe, the absence of metals and dust (not
enough time to form ) and the much reduced molecular gas
content implies very poor cooling

!

Formation of massive stars in the early Universe




Magnetic fields

Magnetic fields are important components of the ISM : these can
provide additional forces which can act to stabilise clouds against

gravitational collapse.

The derivation of the Euler equation in the case of magnetic
fields is complex. We will just give the solution of the Euler

equation :
3kgTM 1 () 3
B! Mo <,B—M——GM§>
Atrgu AT

P —

Thermal Magnetic Gravity
Pressure pressure

O_

The pressure will be a monotonically decreasing

function of r if :
2 3
M S Z6M?
B 2, 5 Mo

The clouds will always be stable if ®, is a
constant.



Application to molecular clouds

Giant Molecular Clouds can be seen as swarms of more
coherent clumps.

The Jeans mass for gas with ng~2000 and T~10K is
M;~3Mg. This is well below the observed masses of the
individual clouds and of order the mass of typical dense
cores.

=» There must be an additional form of support : the
magnetic pressure.

Zeeman splitting provides a method for measuring the
magnetic fields in clouds, although this has only be
successful in a handful of dark clouds.

From the magnetic virial equation we can find the
maximum cloud mass which could be supported against
its own self-gravity by magnetic pressure alone :
"2 5 ﬂn2r4Bz
36" 2,




Application to molecular clouds

Then :
“\nT pC =

Inserting typical values for several cloud types, we can show that most dark clouds can
be stabilised by magnetic effects :

 For dense cores M~M]

* The density ratio is measured to p./py~10

A

Giant Molecular Cloud 50-500
Dark Cloud Complex 500 10 10 104 1°7?
Individual Dark Cloud 103 2 10 30 2-10

Dense Core 104 0.1 10 10 2-10



Summary of yesterday’'s lecture

Singular Isothermal sphere

dv. = — T=cst Vid, = 4nGp
pE+p(v-V)v=—VP—de>g s
) o Hydrostatic equilibrium

;—I;;)drqst:;t:c ec;q:/:t;r/um Spherical coordinates
pherical coordinates

1dP do 1d ,d% _

- 9_0 i 4tGp

Cpdr  dr r2dr  dr

a% 2 a%
= P = Qa 1 =
p(r) Y 0 7p(10) 27TG1"02

These solutions (p(r) and P(r)) diverge atr — 0
Good description of the problem whenr > 0




Summary of yesterday’'s lecture

=p(r=0)%#0 Isothermal sphere %

: a’ dy
General Solution M(ry) = 47T,0c( T ) (52 )

4tGp, dé £=¢,

P, (r))

p(r) = pc exp (_ 2
ar

Comparing with the mass expression

2
M(I‘ ) _ 2aTrO obtained from the singular isothermal
: : . . 0/ — ;
Introducing dimensionless variables G sphere analysis, we see that one more
parameter is needed p,
1/2
CI)g 4‘7TGpC / 15 T T T T T
Y = — and & = — r ) }
a a S
T T oin . 1
ales ‘ | m,
, . I oo
Euler’s equation 2
ﬁ | m.,
_g [ m,
1d€2d¢_8_¢ S st I 5 )
7] - C
§2dg° dg (B o~
2 . Po/ max
£
No analytical solutions ; T of— 1_‘0' %

numerical integration needed Density Contrast log (p./po)




Summary of yesterday’'s lecture

Virial equation for a spherical gas cloud

kgT 3GM;§

37M0 5 4mrg Py = 0

2

Associated with
external pressure

Associated with Associated
thermal pressure with gravity

- If =0 =» equilibrium
- If <0 =» the cloud is collapsing
- If >0 =» the cloud is expanding.

Stability of a gas cloud

Evolution of the pressure

3kyTM, 3 GM?

Py(r) =

Amr3y 20m 1t

Mmax r




Summary of yesterday’'s lecture

Jeans Instability

Introducing perturbed quantities

— Only keeping first order t (V.v; )——aﬂ
p = po+ pP1 nly keeping first order terms Po 1 ot
v=v0+v1
b, =P, + P dv 1
g 0 1 _1—_ _ —
P =P, +P, o - VP, VA
[ ‘ Vz 1:47TGP1

2
d_+v(pv)_0 Ved, = 4ntGp

-

dv  —
P +p(w-V)v =-VP —pVd,

1 62 4‘7TGp0
Ve — + =0
( az ot? as )pl



Summary of yesterday’'s lecture

3/2

M T n
] H
— = 1.0% (—) X
M@ 10K (2X1010m_3)

Wave equation t

_|_

Form of the solution
VZ
2 2 2
( af 0t ar

p1=0 > M]:V0P0:§7T

Critical
Wave Number

<
N
S

,  4AmGpy 4mGu
a2 kT e

1 92 47TG,00> Jeans Mass 4 < '
— 1



uestion : spectra if we have as

many emissions as absorptions

[ | e e [ ] (o] S [l Bl rT e, e s [ J Expanding
8 Emassion from cdges . 1
\IT\';I
- of shell perpendicular -
| to line of sight (C) | 9, 85
| - ; ~J4 N\
Emission from Emisston from receding N
- approaching fromt rear portion of shell (D) ofar \[\
= portion of shell (B) ] Wy D |
- ] ] | ) l'
= | /
ek | \“f‘ \
. ’ . -
Continuum D -
2 Y
| ‘ ‘ C
Absorption due to { B
approaching near ' A
- sude of shell (A) ! ‘I
— A 1 ' l A 1 —— | - - "E
Blucshift A Redshift =5
U —
A—> Y



Gravitational apse

h




Free-fall time

The free-fall time is the characteristic time that
would take an object to collapse under its own

gravity, if no other forces exist to oppose the
collapse.

We will first consider the collapse of a cloud
within a galaxy, but this method applies also at
larger scales (i.e., galactic scale)

External medium

INITIAL CONDITIONS OF THE COLLAPSE

+ Cloud of radius R and mass M, From Newton grawtyzthe equation of motion is :
2°r GM,

* Gas density pg 0t2 ~ 2

* Gas molecules initially at ry will have a mass of or

gas M within the radius and during collapse this d (ar) GM.,.

remains constant at\at) — ~ 2



Free-fall time

Multiplying by — and integrating over dt give :

0 GM GM 4
G - ), =S (-1) = i (2-1)

Then :
or 8m T
— = |— 2 —
P —\/3 TOGPO(T 1)
Hence :
3 or
Jt = >
8ntry Gp, T _ 4
r
Integrating :

( 3 )1/2 o ar
()
8nry G po o [0

Substituting u = r/r, gives :

t_( 3 1/2f
87TGp0 ’

Tabulated -> E

Therefore, the free-fall time is given by :

The free-fall time depends on density : if the inner
region of the cloud are denser, these will collapse
first=» inside-out collapse



Inside-out collapse

Adding to the previous initial conditions that the cloud has an
isothermal behavior.

We also assume that there is a central sink for inflowing material
(the growing central object: e.g., a protostar)

The dynamic of the problem is governed by the Euler’s equation
and the continuity equation (radial equations) :

. dv  dv azdp GM,
PPl =PV, Y S T e T
and
2 d
dP_I_ 1 d(r“pv) —0 d—‘t)+v.(pv)=0
dt r? dr
where p = p(r,t) and , Divergence in
_ 2 spherical
M (t) = fo amr p(T‘, t)dr coordinates

: e My 5 1o/ 8
Differentiating gives : —= = —4mr~pv Vr-f=—2—<r2—f)

External medium




Inside-out collapse

SIMILARITY ANALYSIS

In the previous equations we can identify :
 The independent variables:rand t

* The constants: G and ary

* The variables : p(r,t),v(r,t) and M(r,t)

The only way to form a dimensionless length is :

r
X =—
art

(

We are doing a similarity analysis; therefore, we are

searching for solutions in the form :
3

M. .(r,t) = %Ttm(x)

p(r,t) = a(x)

ATTG t2
v(r,t) = arf(x)

m(x), a(x) and B(x) are dimensionless

(6) 19
or), aptox

), = Go). (@), )= G, G



Inside-out collapse

SIMILARITY ANALYSIS

The equations we must solve are :
dv.  dv a% dp GM,
+ v =
dt f dr 12
dp N 1 dr<p
2
dt 61\/? dr

W = 47TT2p

(6)_16
or art 0x

Knowing that :

(), =G+ (@), 52) = (30,7 Gs

0
dx

)

The equations become :

m=x%a(x — )

1d 2
=g -1 =|a-Z@=-p|a-p
d 2
(-2 =15 = o —p) 2| - )

These equations must be solved numerically, but we can learn
a lot from their form.



Inside-out collapse

SIMILARITY ANALYSIS

m=x%a(x — )

1d 2
(G- -1l o= a= 2 -p|-p

a dx

d 2
(-2 =15 = o —p) 2| - )

We are looking for solutions with the form :
3

My () = Lom(x)

p(r,t) = a(x)

ATTG t2
v(r,t) = arf(x)

An exact solution is the singular isothermal sphere,
where we demonstrated that :
3

2atr, ait
M(ro) = —— =~

2X

then m = 2x, hence:
m = 2x = x?a(x — B)

or
2

~x(x—p)

. In the singular isothermal sphere, the

a

v(r,t)

and f = o
system is in equilibrium (v(r,t) = 0) then 8 = 0 and
2

a=—7
xZ



Inside-out collapse

SIMILARITY ANALYSIS

m=x%a(x — ) Another singular solution is given by :
. 1da 2 *=F ? '
[@—ﬁ)—ﬂadx [—;@—ﬁﬂ@—ﬁ) a=-

dp 2
— A2 _ 11— = _ — — —
[(x = 5) 1] dx [a(x A) x] (x=5) x = 1 is the crucial transition point :
At x > 1:the solution is the singular isothermal sphere
W looking f luti ith the f :
< s BRI Rl st B 3 e form * Atx < 1:thenpf <0, hence v(r,t) < 0 = infall

ast
M, (r,t) = ?m(x)
The transition critical point between infall and static

a(x) isothermal solution (x. = 1) translates into 7, = art

1
ATTGt2 /

v(r,t) = arf(x)

p(r,t) =

This is a wave moving outwards
at the sound speed ar



Inside-out collapse




Example of numerical solution : velocity during the
collapse of an isothermal sphere with mass slightly

InSide—Out COllapse above the Bonnor-Ebert mass

To do the previous analysis, we assumed that :

* The system is the equilibrium isothermal sphere O -
* The boundary conditions are those for that initial state Q.

* There is a sink for matter reaching the origin : this will _
turn into a protostar = | B~

Another interesting case to consider is that of a cloud

which is marginally unstable, for example with a mass . .’_,T/

slightly larger than the Bonnor-Ebert mass. We then r..,.,.v.-.-.-.::::t:. .................................
perturbate the system and follow the evolution. . 4 1
=0 : start of the creation of the protostar as mass starts - 8 - 6 - 4 - 2 O 2

to flow into the sink



Physics Analysis

The transition point moves outwards as a rarefaction
wave with only the gas inside of the radius Rsr = art
moving inward.

After a short fraction of a free-fall time a large fraction
of the gas within this radius is moving supersonically
with the velocity increasing to the centre :

r/|v| is less than the sound crossing time.

Gas is falling onto a growing central object, the
protostar, with a mass M, :

- close to this protostar, gas is approximately
in free fall

static

\

collapse

\

At the transition point, the gas moves approximately
sonically :

-vffzaT/ r=art



static

\

collapse

\

Physics Analysis

The rate of growth of M, is determined by accretion at
a rate :

dM—l' Ar?
77 = lm —dmrvp

. . adm
Assuming constant accretion rate M, = E t and

dt t/Tth\G

Inserting values, the accretion rate for the growth of the The density profile in the collapse region must satisfy :
protostar is : M M M

47'[7"2|U| - 47TT2Uff - Qqrr3/2 [2G M,

p =




Physics Analysis

The collapse starts at t=0

1or¢ 10-8 TR I BN, Since the Jean Mass is M; o p~*/Zinner
g t = 0.0E+00 yeor | 1 el Freesflel region t = 1.0E+02 yeor | )
o Isothermal sphere ~:/ regions have smaller Jeans Mass
1o~ i =>» smaller regions will collapse into smaller
10-12f Isothermal sphere
c o IUIE 2 i sub-clumps
10-14 |- 1 °
» * 10-1p / s =» fragmentation
]0—16-
() = toer M )
10-20 " " " " ! 10-18}- p — 10-6 v M | Mhddt B I A ALY | T
0.01 0.10  1.00 r1?;\%o] 100.00 1000.0010000.0 10-20_ ) 47-[7‘3/2\./“2,,,GAM>§ 1 L t = 1.0E+04 year
0.01 0.10 1.00 10.00 100.00 1000.0010000.0 10-8 |- =1
ria] Free-fall region: r-32
1978 -10 , -
0-8 Free fall region ' = 1"05+03 yeor | 10 |
i ] i Transition region:
oy —3/2
10-10 :/ ] 10712 matter starts to fall -
s 72 sothermal sphere ~ Evolution of the density L 0-1ef |\ Singular isothermal
= - 2 1 . . . \ ‘2
gL T profile with time | sphere:r
: 10716} /
10718 -18 |
o 10 [ Expansion wave front
001 0.10 1.00 10.00 100.00 1000.0010000.0 10-20 " - il "

r [AU]

1.00 10.00 100.00 1000.0010000.0r
r [AU]

0.01 0.10



Summary of the formation of
structures in the Universe

Gas clouds with multi-phases

Temperat
(-] -
| [y

log 7
;.;NAA
/
i .

Density logn (cm™3)

Heating of

l collapsing gas

M, T \3/2 ny -1/2

——10><( ) x (51—

Mg 10K 2><‘10m/g/
dense regions

fast ci)oling
collapse / l \
Gas clouds | | Gas clouds Gas clouds
37_[ 1/2
ltff - (326,00) \
Protostar Protostar Protostar

Low-density regions F@@E

static f

-
collapse

The fi

heating of the gas and the formation of protostars.

st part of\this/Lourse\will be to describe the
processes responsilfle for the eooling of the gas, the

expanding



Summary of Friday's lecture

We defined the free-fall time as the characteristic time
that would take an object to collapse under its own gravity

1/2

. _( 3 )
1T 7 \326p,

Only depends on the density, suggesting 2
that denser region will collapse first p(r) =
= inside-out collapse 2nGr?




Summary of Friday's lecture

dv —dv az dp _GM,

We studied the case of a collapsing gas cloud dt dr p dr r2
with a sink at the center for the inflowing
material, and do a similarity analysis to solve )
the Euler’s and continuity equations dp 1 d(repv) _
dt r? dr
Dimensionless variable X = T
art
External medium
We were looking for 5
solutions with ’ghe form : m = x“a(x = f)
art 1d 2
M, (r,t) = —m(x) _ 2_1__0(=[ — 2y — ] _
G (= B2 =1]-—=|a=—(x=B)| (x =)
1
,t) = dp 2
PO =T (- pr -1 = e - - G- )

v(r,t) = arf(x)




Summary of Friday's lecture

External medium

One exact solution of previous solution is the
isothermal sphere, for which we found :

3

2021, ast art
M(ro) = — OT L= 2x M, (r,t) = ——m(x)
T \ /
X _a_Tt m(x) = 2x

l 2

m(x) =x*alx—p) —— a=

x(x— )
We also defined : v(r,t) = arB(x)
In the case of the singular L
isothermal sphere, the systemisin > a = 2 p(r,t) = p————

equilibrium:v(r,t) =0-> =0



Summary of Friday's lecture

External medium

m=x%a(x — )

d
-2 = 11= 20 = e~ - p)| - p)

Another singular solution is a dx
obtained whenx — f =1

d 2
(G~ )~ 115 = [aGe— )~ 2] e~ )

X = v There is a transition point when
art x = 1 (i.e. whenr = art)
N +
= A
/ 7
aTt > T aTt <r
thenf <0 thenf > 0

=> Infall => |Isothermal sphere



Summary of Friday's lecture

static

collapse
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Summary of Friday's lecture

static

//,)'

collapse

\

l Collapse front

expanding
outwards
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Basic physics of object

formation
f&lingtime

If 7. K teotiapse — the system will evolve isothermally

The shortest collapse time is the free-fall time (by definition).

If 7. L tyr — the cloud will collapse isothermally

The Jeans Mass is given by : )
3/2

M T n
J H
= 1.0X (—) X
Mg 10K (2x101°m‘3)

then if the cooling is efficient, the Jeans Mass decreases and, as
we see in the previous chapter, the density increases at small R.

~1/2

This results in the collapse of smaller region of the cloud in a
process called fragmentation.

Consequence of an increase in density :

- The optical depth : T o p?/3

T = aR = pkR

Mass absorption \

coefficient R « p1/3

- The collapsed object (the first core) becomes optically
thick (z > 1) making the cooling inefficient.

- The collapse will continue, and the temperature of the
core rises as the collapse proceeds adiabatically.



Evolution of the

The first core is mainly composed.

We have demonstrated that the virial equation for
an isothermal sphere is :

kgT 3GM¢
3— My —=
w51

— 4mrg Py =0

Neglecting the external pressure, gives :

T -2 850 ( K >_1K
FC ™ 5kyg R\~ 5x10~2Mg ) \5AU
Radius of the

First core

and the accretion rate to this core is (demonstrated
in the last chapter) :

dM, Tioud
~ 2><10-6( crou )
dt 10K

first core

Further mass addition to this first core will lead to
the increase of temperature.

L collisional dissociation of H, begins, part
of the potential energy goes into H, dissociation not

into temperature increase.

As soon as the dissociation of H, begins, the rise in
temperature happens with a slower rate.

The central core has a significant density gradient
and eventually undergoes collapse to form a very
dense central core.



Structure around the protostar

The collapse of the first core gives a
protostar with the following properties :

- M"’Ol M@
- R"’SR@
- T~10°K

- p~10"%2gcm3

ACCRETION LUMINOSITY

The energy balance of the protostar is given
by :
Ugr + Upn + Ep + Lt =0

e

O energy
Gravitational Potential

potential energy

Energy radiated over the
formation time of the protostar

With :
A 2 Dissociation energy of
. ~ —
UQT GM* /R* H, (4.2eV)
o Uth ~ — gT/Z Fraction of Helium
M, [Eg4( YM.E;(He)
o B, =A [Ty g ()| +
mpy 2 4mpy
Fraction of Hydrogen lonisation potential of lonisation potential of

Helium (75 eV
Hydrogen (13.6 eV) ( )

Do we really need to include thf energy radiated ? If L. = 0, then:
Ugr —5Ugr +E, =0

5 Ugr = Ep
Hence
R GM. 60 < M, > R
p— ) @
max 2Ep M@

which is much larger than what is observed for T Tauri stars (= 8M(,)) .



Structure around the protostar

From the previous discussion, it implies that L,. # 0.

Indeed, L, must be close to the accretion luminosity :

Lo~ _GM*M_61 M M.\ [ R,
roorece ™ R, UU\5X1075Mgyr=1 ) \Mg J\5Rg

Artist view of a T Tauri star



Structure around the protostar

ACCRETION SHOCK AND DUST ENVELOPPE _ GM.M

acc R
*

The accreting gas is infalling with a velocity close to Or :
the free-fall velocity : 1 1

1 eyt () ) ) () ¢
2GM . \2 M,\2/( R, \ 2 ~ 3 =5 1
) :28()( > < > km/s ATT05R? 5x10-5Mgyr Mg) \BRg

vff = ( r MO SRQ

This is much larger than the sound speed in the gas

-

=

At this temperature, UV and

L A strong shock forms with vgs = v¢f, givin X-Rays photons are produced

post-shock temperature of 106K

i b
max — T
The whole region is optically thick with an effective Wien’s displacement law

temperature such that :
Lacc =~ 4mR2opTys s




Structure around the protostar

Surrounding the protostar, the gaseous envelope also contains dust.

The UV flux produced by the young protostar can vaporize dust grains
within a region called the opacity gap out to a radius known as the dust
destruction front.

Outside of this radius, the dust absorbs the radiation and re-radiates. In
the dusty layer, the dust temperature must drop until the layer becomes
optically thin to re-emission of infrared radiation from the dust. This
occurs at (dust photosphere):

= 1
/ v pPK
ACCRETION
\\suocxsnom
5 Limit:z =1 Mass Absorption Coefficient
T =aR

a = pK




Structure around the protostar

. PHOTON

)
P,
L/L

ALMA observation of HL Tauri
(distance : 450 light-years)




Structure around the protostar




Evolution of the protostar

PROTOSTELLAR STRUCTURE DURING ACCRETION

The structure of the protostar will be governed by the equations of
hydrostatic equilibrium plus the equations describing the thermal
structure (cf. last year course).

The equations governing the evolution are :

— la—P — & =0 Euler’s equation
por  Or
And the definition of mass :
oM .
P 4tr“p
Also
_ plpT Equation of state
U

Applying the first law of thermodynamics gives :
as

pTE = p€E — V.F
where F is the radiative flux definedLas :
b= 412
Hence :
oL 5 , .08
o = 4nr<pe — 4nr pTE
If the heat is transported by radiative diffusion we also have :
L 4acT3 0T
Amr? ~ 3pk Or

These equations can not be solved analytically, and we must rely
on numerical simulations to guide our understanding of the
physics.



Evolution of the protostar

The boundary conditions of previous equations are :
« M(R—>0)=0 _ M
e L(R-0)=0

P 4mrsi2 [2G .

Lsurface = L« — Lgcc

2GM,\/?
Wz 7
. = (5)
* The surface pressure must balance the‘momentum flux, or ram pressure
of the infalling gas which is ~ pv]?f giving :
T M (ZGM*)]L/2
o) = 4w \ R3

Numerical integration gives for the accretion rate M = 1><1O‘5M®/yr‘1

* |Ifinitially R.is large, the entropy of the gas added is low and the protostar
shrinks under gravity. The converse is true is R,is small

* The protostar is characterized by its entropy profile S(r)

* The results show that —_isanincreasing function in the early stages which
gives an increasing entropy distribution with radius.

Rx (Rp)

Radius

0.4

Mass

M

I
0.6

l
0.8

(M)

1.0



Evolution of the protostar

ONSET OF DEUTERIUM BURNING AND CONVECTION

(pext)l

Consider a fluid element which moves a small distance through the
atmosphere Ar so that it remains in pressure balances with the
surrounding gas.

Ar
* The element expands adiabatically to a lower density (pl-lnt < p?nt)

* For stability, the density of this element must be greater than the
density of the surrounding gas (pext)o

* If the entropy is increasing with radius, the element is of lower
entropy than the surrounding

* Foranideal gas: b
S =c,log ([7>

where y = ¢,/c,, is the heat capacity ratio. The atmosphere is convectively stable if :

dS

Then if the density increases, the entropy decreases. dr >0



Summary of Monday's lecture

When approaching the central sink = the first core,
the density increases (see the density profile), then :

T = aR = pkR x p?/3

<

The optical depth increases

Photons can not escape the
optically thin medium
=» cooling becomes inefficient

Il

The temperature of the first core increases

‘ The temperature becomes sufficient
to start the dissociation of H,

Dissociation energy : 4.2 eV

As soon as the H, dissociation begins,
the rise in temperature happens at a

slower rate (most of the energy goes

into the H, dissociation)



The energy balance of the protostar is given by :
- Uth +E,+Lt=0

The collapse of the first core gives a protostar

Summary of Monday's lecture

Internal energy

Gravitational
potential

Potential energy

Energy radiated over the formation
time of the protostar

with the following properties :

M~0.1 Mg,
R~5Rg
T~10°K
p~10"%2g cm

-3

Close to the first core, the accretion luminosity gives a “surface”

temperature of1:

T B Z—7300 i N
“ \4mogR3) 5x10~°Mgyr—1!

[l

This temperature is sufficient to vaporize the dust grains

surrounding the protostar = opacity gap !

1

M,
Mg

1

)

R,
5Rg

~3/4
) K

We defined the photosphere radius as the radius at which light
re-emitted by dust grain can escape :

Rphot -

pK



Summary of Friday's lecture

. PHOTON

)
P,
L/L

ALMA observation of HL Tauri
(distance : 450 light-years)




Evolution of the protostar

At a temperature of about T ~ 10°K, the first nuclear fuel to ignite is
the deuterium following :

H+ 'H— *He +vy

Stellar Structure

which releases 5.5 MeV.

The heating rate due to this process is very dependent on temperature
with €p X T11'8:

* The protostar is unable to effectively transport the large
luminosity produced in the core via radiative transport

* The core heats up, reversing the entropy gradient and the M>1.5 0.5<M<15 M<0.5
protostar becomes convective Convective Core Radiative Core  Fylly Convective
Radiative Envelope Convective Envelope
L 4acT? oT
We can calculate the maximum energy flux which can be carried by 47712 3pK Or

pure radiative flux. This occurs when the entropy is constant. From the

equation of protostellar structure we get :

, 4acT? (dT) GM16macT? (dT)
S

dr dP

s 3pK

3pK



Evolution of the protostar

Stellar Structure

e Although the amount of deuterium is small, convection
helps to bring new fuel to the core from the accreting gas

* This deuterium burning phase acts as a thermostat — the
deuterium thermostat

* Anyrise in M, /R,increases the stellar entropy which, via
convection, increases T; this leads to a substantial increase
in epwhich inflates the star, reducing M., /R,

As the protostar mass continues to grow via accretion, the
energy production from the deuterium burning remains

approximately constant and determined by the rate of supply of
new fuel from the accreting gas. M>1.5 0.5<M<15 M<05

Convective Core Radiative Core  Fuylly Convective
Radiative Envelope Convective Envelope



Evolution of the protostar

10
The maximum energy flux that can be carried by a pure radiative flux is :
, 4acT? (dT) GM16macT? (dT)
S

dr dP

3pK s 3pk

Initially L.+ is much lower than the luminosity produced by deuterium
burning and keeps rising.

We can show that : O

11/2 ,—1/2
* L.t scalesas M, /R* /

* Eventually L.;+ = Lp and radiative energy transport can again
remove energy from the core

Lyit for different
stellar masses

Radiative
transport
=>» stops
convection

~
~

| 1 | ‘ 1 A | , -
0 0.2 0.4 0.6 0.8 1.0

Relative Mass M,/M,



Evolution of the protostar

Effectively the radiative transport acts as a
barrier preventing deuterium reaching the core.

Deuterium in the core is quickly depleted.

Without convection new deuterium accreted
onto the protostar accumulates in a shell.

Eventually the temperature of this shell reaches
106K and the shell ignites

The hot outer shell leads to a substantial
increase in the stellar radius

QOO Radiative Core
% Q Convective Envelope

12

| I I

Deuterium shell buming
injects energy causiing
additional swelling.

~

Appearance of
radiative barrier

\

\

Onset of full convection

l | 1
1 2 3

"Mass

|
4

M

| I |
5 6 / 8

(M)



Evolution of the protostar

12 | I

Deuterium shell buming
injects energy causiing
10 additional swelling.

~

e
o

Appearance of
radiative barrier

Rl

(b) radiative
barrier

(a) steady-state
burning

Radius | R«

(c) depleted
interior

|
4

M

1
5

(M)

l
6




Evolution of the protostar

CONTRACTION AND HYDROGEN BURNING

The final stage of protostellar evolution is the
contraction of the star.

Without deuterium burning in the core, the self-
gravity of the protostar drives the gravitational
contraction of the star.

The rate at which the star contracts is determined
by the rate at which the star loses internal energy
via radiation : the Kelvin-Helmholtz timescale :

e = M2 _ 5107 (e FEANEA
KH = RL, M) \Rg) \Ig) 7"

As the contraction proceeds, the core temperature
continues to rise until eventually 107 K.

At this temperature, hydrogen burning commences and
halts the contraction < restarts central convection

Further temperature rise enables the CNO cycle

At this stage, the protostar is regarded as a pre-main
sequence star



Evolution of the protostar

12 T T T T T 1 T
deuterium shell burning gravity becomes
10 injects energy dominating force -
causing R« decreases and
0 swelling \ T and L rise
X 8 end of n
né interior at ~107 K
6 - deuterium ) g
» . H-burning begins
= burning .
'8 '\ (depletion of core) (stop contraction)
e 4+ —
\ radiative barrier f
[ ~ (depletion of core) Hydrogen fusion
full convection and second initiation
because of deuterium burning of a central convection zone
0 | 1 ] | ] | ]
0 1 2 3 4 5 6 7 8

Mass M. (My)



(K)

Temperature log 7

Summary of the First half of this
course

Jeans Mass : mass above which gravity dominates
-2 -1 0 +1 +2 +3
Density logn (cm™3) M; _ 1 OX( T X( Ny @ collapse
i ) , I I ) Mg ' 10K 2x1010m=3 \
K t = 0.0E+00 year |

10-8
10-10}
10—12._

0.01 0.10 1.00 10.00 100.00 1000.0010000.0
r [AU]



Summary of the First half of this
course

12 | | 1 | | [ I

Deuterium shell buming
injects energy causiing
10 additional swelling.

®
R
~ 8| Appearance of
radiative barrier
Q: o B e
g
s 4
&0 { 7 - t
ACCRETION / “ 2 \ (a) steady-state (b) radiative
\\ SHOCK FRONT burning barrier
Onset of full convection
0 l | 1 | 1 l 1
0 1 2 3 4 5 6 ] 8
Mass My (M)




Galax1es an star formatlon
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Properties of Galaxies in the
Local Universe

THE GALAXY ZOO

Spiral

. " »
E3 £6

Elliptical

Irregular

Edwin Hubble
1889-1953

Spiral-barred
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Properties of Galaxies in the
Local Universe

ELLIPTICALS / EARLY TYPE GALAXIES

The elliptical galaxies are classified following the ratio between

their major (a) and minor (b) axis, and named E,, with n :
a—>b

n =10




Properties of Galaxies in the
Local Universe

ELLIPTICALS / EARLY TYPE GALAXIES

The main properties of ellipticals are :

* Gas poor

* No star formation

e Old stars

* Stellar mass ranging between 10! and 103 Mg

The surface brightness of an elliptical galaxy is given by :

@ =12




Properties of Galax1es in the
Local Universe '

SPIRALS / LATE TYPE GALAXIES

A spiral galaxy is always composed of a bright bulge and a disk




Properties of Galax1es in the
Local Universe

SPIRALS / LATE TYPE GALAXIES

The classification of spirals galaxies depends on the openness
of arms and the prominence of the bulge.

From Sa to Sc : the openness of the arms increases, and the
bulge prominence decreases.




Properties of Galax1es in the
Local Universe

SPIRALS / LATE TYPE GALAXIES

The classification of spirals galaxies depends on the openness
of arms and the prominence of the bulge.

From Sa to Sc : the openness of the arms increases, and the
bulge prominence decreases.

The main properties of spirals are :
* Gasrich

e star formation on-going

e Gas in both low density neutral hydrogen and dense
molecular hydrogen

* The fractional mass of neutral hydrogen to the total is <0.03
for a Sa, and goes up to 0.1 for a Sc '\




Properties of Galaxies in the
Local Universe SBb(r)ll '

SPIRALS / LATE TYPE GALAXIES

We can refine the classification by adding :
- The presence of aring (r)
- The definition of the arms : from well defined ‘I’ to fuzzy ‘V’




Properties of Galax1es in the
Local Universe

SPIRALS / LATE TYPE GALAXIES

To describe the brightness profile of a spiral (or spiral-barred)
galaxy, we need to consider the two components : the disc and
the bulge.

A spiral seen face-on has a light profile given by :

I(r) =1, exp (— 2)

The overall distribution of mass in the disc is given by :
r |z|
p(r,z) = py exp (— —) exp | — -

/

Scale height : the height at
which the density falls of by a
factore




Properties of Galaxies in the

L.ocal Universe

THE GALAXY LUMINOSITY FUNCTION

The galaxy Luminosity Function is the distribution in
luminosity of the number density of galaxies at a given
redshift. Its form has been described empirically by
Schechter (1976) :

o(3)a(F) = (F) ew(-5)a()
L* L* - L* exp L* L*
which can be written as :

d(x)dx = d*x%e *dx

Where ®* and L* are the density and luminosity where
there is a change in the shape of the function, and « is
the slope at the faint-end.

Number densities

1() -

1()

10)

1() °

10)

10~ 55

Z~8 LF L:+:

__". - )

Absolute magnitude

19



Properties of Galax1es in the
Local Universe ‘

THE GALAXY LUMINOSITY FUNCTION

To measure the LF, we need a photometric survey with a
redshift for each detected galaxy.

One can naively say that the number of galaxies per given
luminosity is the number density of galaxies ®(L). This is
not the case because of the Malmquist bias (preferential
detection of intrinsically bright galaxies).

We need to correct this effect to obtain an
unbiased determination of the LF.




Properties of Galaxies in the
Local Universe

THE GALAXY LUMINOSITY FUNCTION

|
N

The V/V,,.x method (also named the volume luminosity
test) is the most successful method to determine the LF.

Taking into account the luminosity limit of the survey
Liim we define :

/- volume within which each source is distributed

Vinax : maximum volume within which each source could
still be detected

log,, Number / mag / Mpc?
|
N




Properties of Galaxies in the
Local Universe

STELLAR POPULATION

Temperature (K)
25,000 10,000 6,000

P "’.,. Supergiants
Soing O
Stars are mainly characterised by their luminosity and '
surface temperature. They are classified according to
their spectral type :

With decreasing T : O, B, A, F, G, K, M

A diagram showing the luminosity of a star as a function
of its temperature is a Hertzsprung-Russel (HR) diagram.

+5

Luminosity

Main Sequence

L
T
S
=
c
o
1"
>
L
—
=
O
o
Ra
<

Most of the stars are along the line called the Main
Sequence where they are fusing hydrogen in their core.

- ... "
o TRORW,
» .
White Dwarfs

The Giant branch is when the stars are fusing the Helium " . m

in their core. Spectral Class




Properties of Galaxies in the

L.ocal Universe

STELLAR POPULATION

We can identify a gap in the HR diagram : that is the
place where we can find variable stars (such as RR Lyrae

or Cepheid).

Cepheids are evolved variable stars (helium burning
stars). Their visual magnitudes vary between a ~0.01 and
~2 mag, with a period of a few days to a few weeks.

The longer the period of their variability, the brighter

their intrinsic luminosity m ;
dpc _ 100.2(3[(B—V)0+F]—a log P+y )

If we can measure the period of a

Cepheid, we can deduce its intrinsic

luminosity and therefore its distance.

L
T
S
e
=
=2
1"
=
L
—
=
O
o
Ra
<

+5

Temperature (K)
25,000 10,000 6,000

-~ ...
T T
» .
White Dwarfs

A F G
Spectral Class

Luminosity




Properties of Galaxies in the

L.ocal Universe

The HR diagram ca be used to measure how far
away a star cluster/galaxy is from Earth.

This can be done by comparing the apparent
magnitudes of a star clusters with distance
unknown, with the absolute magnitude of stars with
known distance.

The observed group is then shifted in the vertical
direction until it reaches the main sequence.

The different in magnitude (m-M) is a direct
measure for the distance

L
T
S
=
c
o
1"
>
L
—
=
O
o
Ra
<

+5

Temperature (K)
25,000 10,000 6,000

st ' o > Supergiants
o 'o" e ¢
»

Main Sequence

-
'.l .
4 » W
® “ - .
. ®

White Dwarfs

A F G
Spectral Class

Luminosity




Properties of Galaxies in the

L.ocal Universe

Stellar luminosity scales approximately as
L xM“

with a ~ 3 for stars with M < 0.5 M,
and a ~ 4 for stars with M > 0.5 M,

The time a star can remain on the Main Sequence is
given by :
M 1
Tops X I x M ¢

From previous equation, we clearly see that massive
stars have shorter lifetime. Therefore, the most
massive stars are excellent tracers of recent star
formation. According to the HR diagram the most
massive stars are O and B.

L
T
S
=
c
o
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>
L
—
=
O
o
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<
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Properties of Galaxies in the
Local Universe

The number of newly formed star with
masses in the range M —-> M + dM is 10!
given by the Initial Mass Function

(IMF). 102

10~

\ I ':.!H

The commonly used IMF is the 1~ 3
Salpeter IMF which has the shape of a 2.0 (8¢
power-law : 1072 }H—— apg 1.89 (8, qior + 205
d_N e M9 & Salpeter witha 2
dM 10 Kroupa with o

for a standard Salpeter IMF 8 = —2.35 10°° ,
10" 10 10° 1
\ mass in M
Typo in the handout

The mass budget is dominated by the low-mass stars. But according to the relation between
Luminosity and Mass L «« M%, the most massive stars dominate the luminosity budget.



Properties of Galaxies in the
Local Universe

STELLAR LIFE CYCLE

Old Age



Summary of Friday's lecture

Initial Mass Function

Number densities

10

10+

10

10 °

10)

10-" &=

. "‘ =)

Absolute magnitude

L o M%
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Cloud fragmentation

In chapter 3, we saw that for a standard cloud of hydrogen,
the Jeans Mass ~ 1 M. This means that any more massive
cloud (exceeding the Jeans Mass) is unstable.

Why do we not produce a few very massive stars
from the collapse of a giant molecular cloud ?

Integrated Intensity (X kms™')
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Cloud fragmentation

We consider a homogeneous spherical cloud of gas
of density py, radius R, and mass M,. We assume
no internal pressure throughout the collapse.

Gas molecules initially at a radius 1y will have a
mass of gas M,. within the radius, and during the
collapse this mass remains constant.

This analysis will follow the same calculation as
before for free-fall collapse. Then the equation of

motion of the molecules is (Newton’s gravity) :
d%r GM,

otz r2
: . d : : :
Integrating by 7 = d—: and integrating with respect
to time gives :

1 GM1" 4n T,
52 == =242 SO
Zr [r LO 3 rOPOG(r )

Hence :

E_T 3

The negative sign is chosen to
indicate the collapse

dr  |8mGpry (ro
r

1/2



Cloud fragmentation

From the previous equation, let’s determine : the

free-fall time and the density evolution.

We introduce the dimensionless length :

§=r/m

and the characteristic time :

- 3
0 |8nGp,

and the dimensionless time :
T = t/to

Hence :
d 8mGp, 2 1/2
_7" — _ "o (T_O _ 1)
dt 3 r
Becomes :
d¢ (1 1>1/2
dr  \¢&



Cloud fragmentation

We can now make the substitution :
& = cos’a

i)

da_ 1
dt  2cos?a

Then :

becomes :

Separating the variables :
2 cos?a da = dt

Integrating :
1
a + Esin 20 =T

Remember that :

§=r/m

& =cos’a

o 3
0 |8nGp,

T = t/to

The end of the collapse occurs when r = 0, then when
¢ — 0 which means thata = /2 :

T 1 T 3T
brr = (E +ES"”T> fo=7% = (32Gp0)

"

Like what we found
at the stellar scale

1/2




Cloud fragmentation

The mass within each collapsing shell is conserved, and
since the density is initially uniform, it must remain uniform
(because the free-fall time does not depend on 1y).

Because of the mass conservation :
600 = 1°p(t)

Or
r
— =cos?a
To

Hence :
p() 13 _ 1

po T3 cosba

If we know assume a time t close to the collapse :
Il )
to to

because t — tfr, thenr —» 0 and a — /2.

Then

_ +1_2 m
T=« 2sm oc—z €

We can also say that :
I8
r~0 @azi—ﬁ

Then :
o tesin2a=F— B4 2
T=a+tosin2a=o p 2sm(n B)
Or
o x3 x> x7
sInx = x — 3!-+ 5!-— T
Hence
m 1 , +_8ﬁ3 s
A e Rk
T T 8pB3 . 3e€
—— =& e



Cloud fragmentation

At the time close to the collapse, the density could be
rewritten as :

p(®) _ 1 _ 1 z(z>
Po cos6(%—,8) Sin%ﬁ)x 3€

Small angle approximation

sinff = f

2

Remember that :
t tff — (tff — t) T
= — = ——€
i i 2

rO_ (2 )
Po \3(trr — 1)

Note that p(t)/p, depends only on t;¢ and
not on the initial radius 7y

Hence :




Cloud fragmentation

Now consider that towards the centre of the initial sphere
the density was perturbated to have a slightly higher density,
an overdensity such as: p’ = py + 9,

The free-fall time of the overdensity is given by :
1/2 1/2

i =(5365) = (526) ()
77 \32G6p") \32G6) \p’

Or, according to the binomial theorem :

1 )
-1/2 1 — _0)
(p + 6p) ,03/2 ( 200

Hence :
8o

trp = try (1 - 2_/00)

In that case the free-fall time is slightly
shorter.



Cloud fragmentation

Towards the end of the collapse, this overdensity will have
grown relative to the mean density of the cloud :

, 2
p (t) N (tff — t) ~ 14+ 50tff

pe) Nty —t poltrr — t)
p() (2t \’ 8
Po <3(tff - t)> e = b <1 - 2_;;)0)

Therefore, the overdensity grows as :
6(t)  Ootyy

,O(t) - po(tff — t)

This becomes very large when t — t¢¢

All over-densities in the cloud grow at the
same time. No dependence on mass or
radius

Remember that from the Jeans analysis, we obtained :

 The dispersion relation :
w* = af(k? — k})

* The mass associated with a perturbsgtion :

- ) o)

=>» In the Jeans analysis, the growth of overdensity
depends on the wavevector k and hence on the mass M.

Conclusions : In this analysis, a small inhomogeneity in
the pressure-free case will grow algebraically with time,
and all perturbations grow at the same rate

=>»sub-clumps of different masses form stars of different
masses at the same time



Cloud fragmentation

Qualitatively therefore we expect the following :

* A cloud which is initially very large compared to the Jeans

mass will start to undergo approximately pressure-free
collapse.

* Many factors will break the symmetry :
* Initial shape of the cloud
* Large-scale rotation
* Small scale velocity variations (i.e. turbulence)

* Any initial inhomogeneities will grow with time and they
all grow on similar timescales

* Eventually we expect the densest of these to become self
gravitating in their own right



Cloud fragmentation

HOW DE WE FORM THE INITIAL MASS FUNCTION ? %

Observationally, there is a good correspondence between the

I -mass spectrum and the shape of the IMF.
AEUEHATEES SfF u P Molecular clouds

But how does this mass spectrum come about ?

Input physics almost certainly includes :

- Turbulence-energy input drives random motions in the gas
giving rise to a turbulent cascade. The standard result is that
the spectrum of energy in turbulent motion satisfies :

E(k)dk < k=>/3dk

- The most successful models invoke scale-free, or fractal,
structures within the cloud

Declhimation (B1950)

- Competitive accretion — for example, the denser cores grow ey - A “Sh 20en e 2
by faster than the less dense cores by competing more
strongly for the low-density gas

Right ascension (B1950)

Fukui et al. 2001
mmmm) Further progress requires numerical simulations...
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Cloud fragmentation

S el i t=0 : We begin with such a gas cloud, 2.6 light-years across, and

% Fhids Fac y

containing 500 times the mass of the Sun. The images measure 1 pc
(3.2 lightyears across).

t=38kyr : 38,000 yr: Clouds of interstellar gas are seen to be very
turbulent with supersonic motions.

t=76kyr : As the calculation proceeds, the turbulent motions in the
cloud form shock waves that slowly damp the supersonic motions.

t=152kyr : When enough energy has been lost in some regions of the
simulation, gravity can pull the gas together to form dense "cores".

t=190kyr : The formation of stars and brown dwarfs begin in the
dense cores

t=209 kyr: As the stars and brown dwarfs interact with each other,
Ty Sate many are ejected from the cloud.

Urvwersty of Execer




Galactic-wide star formation

WHAT FACTORS CONTROLS STAR-FORMATION ON A
GALACTIC SCALE ?

Some definitions first :
* 1 : SFR per unit of volume of the galaxy
Y :SFR for the whole galaxy

* Ysrr - SFR per unit projected area of a galaxy

Intuitively, we expect the SFR to depend on the
amount of available fuel.

This has been demonstrated
observationally: the Schmidt law
ZSFR 08 O-n

where o is the surface gas density.

For a constant disc thickness, then :
) o« p”



Galactic-wide star formation

WHAT FACTORS CONTROLS STAR-FORMATION ON A 3 £
GALACTIC SCALE ?

The best observational result is the Schmidt-Kennicutt =
IaW . » a/

5 - 1.4
SFR _

= 25x1074 | —
Mgoyr—tkpc=2 <M®pc‘2)

)
w
..\\

E kpc-:
"

0F "aw

5 J‘;f

) "/ . 7
This result has been obtained by observing 97 . -1 ’SP /(S / ‘
galaxies. al

3 2 Line witha _

slope a=1.4

In the following, we will consider simple models to |
explain the observational S-K relation. We start our S 4
analysis by considering clouds which exceed the Jeans /o

Mass, and then collapse. 4l



Galactic-wide star formation

MODEL 1 : Collisional Assembly

Here we assume that the ISM consists of many small
clouds, each less massive than the Jeans Mass.

Larger clouds are constructed by collisions between
the small clouds.

In this simple model, the collision rate will be :
/The RII/IS mean Cross section of the

Density of clouds velocity in the disc cloud

We also assume the collision time is long compared to
the free-fall time of the clouds once they exceed their
Jeans Mass.

This suggests that :
P o p?
which is not in agreement to the observed S-K law.



Galactic-wide star formation

MODEL 2 : Collapse-time limited

In this model, we assume that we already have large Therefore, we get :
clouds already in place, which exceeds the Jeans Mass P o p3/?
by a large factor (e.g., Giant Molecular Clouds) which is close to the S-K relation - \

From the previous discussion, we know that these

1.4
clouds will collapse and fragment on a free-fall time. ISFR _ 25%10~* a
Moyr~lkpc—2 Mgopc~?

In that case, the SFR will be proportional to the gas
density divided by the collapse time scale, such as :
P
Y < —
Lrr

Remember that t;( is given by :
t _( 3 >1/2
T = \326p
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If we only consider the dense component of
the molecular gas, we have a linear relation.
The non-linearity at low-density is probably
due to the diffuse molecular gas which does
not participate to the Star Formation.

There is a limit in gas mass below which star

formation is very inefficient (Bigiel et a. 2008)

The star-formation depends only on
the molecular gas and not on the
atomic component.
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Summary of Monday's lecture

Only depends on
the initial density

Declination (B1950)
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Only depends on
the free-fall time

/ 60
trr = Ly (1 - 2_po)

\ The free-fall time of the

perturbed region is shorter
than in its surrounding

All overdensities
grow at the same
time, no
dependance on
mass or radius

/
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p(t) - po(tff — t)
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Summary of Monday's lecture

1 Y 1 T T

Collisions/merging of small clouds can not explain the shape
of the SK relation. The only way we can explain the slope of XSFR
the SK relation is by assuming that Giant Molecular Clouds
exist in the Universe.
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Simple models of gas and star-
formation evolution in galaxies

In the following, we aim to trace the evolution of
star-formation rate in galaxies.

We first need to make the following definitions :
- The initial total gas mass is M,

- The mass in the gas is a function of time : g(t)
- The mass in stars is given by s(t)

- The star formation rate is given by W(t)

and the following assumptions :

- Gasis returned from the stars to the ISM via
supernovae in an instantaneous process

- The fraction of mass locked up in old stars is a

Gas is returned to the ISM from supernovae
atarate: (1 — a)¥. This phenomena is
called feedback.

MODEL 1 : Closed-box

In this model, there is no gas inflow and no gas outflow.



Simple models of gas and star-
formation evolution in galaxies

MODEL 1 : Closed-box

The mass of the gas evolves as :

dg
dt
The gas returned to
Amount of gas the ISM by SNe
in new stars

We can then assume a linear relation :
Y(t) =eg(t)

where € is the star formation efficiency (the mass
of stars formed per unit gas mass)

€ can also be seen as the depletion time, i.e. the
time needs by a star-formation rate to completely
use the available gas :

_1_8
Tdepl_e__q,

We then get the following equation for the evolution of the gas mass :

T = —aeg
Hence : ;
&9 = —aedt
g
Then :
[In g ()19 = —aet

Or g(t = 0) = M, (by definition), then :
Ing(t) —InMy = —aet

Finally :
' g(t) = Mge™*¢t

b For a galaxy in a closed-box, the gas mass decreases
exponentially with time.

The stellar mass :
s(t) = My — g(t) = Mg(1 — e %)



Simple models of gas and star-
formation evolution in galaxies

Galaxies in the Universe are not in closed-box : inflows and outflows of gas characterize the life of most galaxies.

Accreting Low-Metallicity Gas

Observing the
atomic gas in and
around the Milky
Way reveals large
gas clouds in the
halo of our galaxy.

Similar accreting
gas has also been
observed in other
galaxies.




Simple models of gas and star-

formation evolution in galaxies

MODEL 2 : Bathtub

Suppose now a galaxy subject to a constant gas inflow
rate @, then the evolution of the gas mass becomes :

d
—g:—a‘P+CD
dt

One can naively expect that a very large inflow rate @
may produce a galaxy extremely rich in gas, with a
total mass completely dominated by the gas mass.

=» This is clearly not seen for the bulk of galaxies

The simple reason is that the Star Formation Rate is
linked to the total amount of gas through the Schmidt
—Kennicutt relation, and it acts as a “valve” that
regulates the total amount of gas in the galaxy by
transforming the excess inflowing gas into stars.
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Simple models of gas and star-
formation evolution in galaxies

MODEL 2 : Bathtub

In the bathtub model, the gas inflow can be seen as the
water flowing from the tap, the gas mass can be seen as the
water in the bathtub and the star formation rate is the water
flowing out of the drain.

4 N -
F y >

Inflow, &
R

The rate at which the water flows out of the drain is
proportional to the water pressure, hence proportional to the
amount of the water in the bathtub.

If the rate of inflowing water from the tap is increased or .
decreased the level of water in the bathtub increases or 1 .
decreases to reach a new equilibrium point, where the _ /
associated pressure makes the outflow rate again in e - - ——

equilibrium with the inflow rate.

Gas mass, g
b The amount of gas in a galaxy works in a similar way, .
where the water pressure is replaced by the S-K relation. /- e J

Star-Formation rate , ¥




Simple models of gas and star-
formation evolution in galaxies

MODEL 2 : Bathtub

The gas fraction is the mass of the gas relative to the total
baryonic content (i.e., gas and stars), which is often an ‘,
indicator of evolutionary stage of a systems : !
£ M(gas) M(gas) g
995 = M(baryons) M(gas)+ M(star) g+s

' 4 \
y

y" >

Inflow, &

/

At equilibrium, for a constant inflow rate, the gas mass is
constant :

@
g= Qe
The stellar mass keeps growing, and is given by :

s(t) =dt—g < N————————

r —

The gas fraction steadily decreases with time, hence making Gas mass, g
galaxies “gas poor”. After the equilibrium has been reached :

1 ke e ad

fgas = aet Star-Formation rate , ¥




Simple models of gas and star-
formation evolution in galaxies

MODEL 2 : Bathtub

The gas fraction is also indirectly related to the stellar mass
and can be expressed as
a+1

fgas(t) = aes(t)

which highlights the relation between the stellar mass and
the gas fraction.

It is expected that the gas fraction should decrease with the
stellar mass, which is indeed observed in local galaxies

The gas fraction is therefore a good tracer of the galaxy
evolutionary stage, i.e., galaxies with low gas fraction are
typically more evolved than galaxies with high gas fraction.

1.0 [

0.8}

gas fraction

0.0

0.6 f
0.4

0.2 f

-=-=Boselli+14 X_,=constant |
— Boselli+14 X_,=lum. dependent
- s — Peng+14 model z=0.05 -

log stellar mass



Simple models of gas and star-
formation evolution in galaxies

THE EFFECT OF OUTFLOWS

One of the primary mechanisms responsible for driving
outflows is associated to SNe explosions. Radiation pressure
from the light emitted by young luminous stars is another
possible mechanism.

SNe and radiation pressure from young stars are linked to the
star formation rate, hence we can express the outflow rate A as a
function of the star-formation rate :

A=2¥

where A is the outflow loading factor (observations give A ~ 1 for
actively star-forming galaxies).

Introducing the outflows effect, the gas evolution with time
can be written as :

d
—g=—a‘{’+CID—A‘P

1N

Star formation Inflow Outflow




Simple models of gas and star-
formation evolution in galaxies

THE EFFECT OF OUTFLOWS

The gas evolution with time is given by :

dg
—=—a¥Y+ P - A¥
dt
Including the Schmidt-Kennicutt relation (¥ = €g) gives :
dg
— == +d—- 1
1t aeg €g
which gives an equilibrium gas mass (dg/dt=0) :
()

g:(a+l)e

The effects of outflows is to greatly increase the effective
value of a, i.e., the amount of gas lost.

At equilibrium, the stellar mass is given by s = aW¥Wt = aegt.

Therefore, at equilibrium, the gas fraction is still given by :

¢ 1 1
995 ~ et + 1 aet

b Independent of outflow rate

Gas fraction seems not to have an effect in explaining the
lower gas fraction in massive galaxies.

In massive galaxies, Active Galactic Nuclei can greatly
contribute to enhance the outflow rate, hence effectively
increasing the value of A, even by a factor of several, hence
contributing to greatly reduce the gas content in massive
galaxies



Metallicity evolution of galaxies

The definition of metals for astronomer is
different from the well-admitted definition
of metals in Physics : “all elements heavier
than Helium”.

The metallicity is the mass fraction of
heavy elements defined as :
7 = Mmetals ~ Mmetals

Mot Mgas

We differentiate :

- Stellar _metallicity : mass fraction of
metals in the stellar atmosphere

- @Gas metallicity : mass fraction of metals
in the Inter Stellar Medium (ISM)

The solar metallicity is Z5=0.014

Periodic table of the elements

Metals for non-astronomer

[ Alkali metais [ Halogens Metals for astronomer
B group ] Alkaline-earth metals [ ] Noble gases
é X ] Transition metals [ ] Rare-earth elements (21, 39, 57-71) 18
: 1 (] Other metals and lanthancid elements (57-71 only) 2
H 2 . 3 14 35 16 17 | He
3 r ] Other nonmetals ] Actinoid elements 5 6 7 8 9 10
’l L | Be B N|O/| F |[Ne
1n |12 13 |4 |15 (18 [17 |18
*| Na Mg| 3 4 5 6 7 8 9 10 11 12 | Al EEIEREEEETERGE Ar
g0 |2 2 (2 |3 24 s 128 f2 128 (29 (30 31 32 34 |35 (36
K|Ca|Sc|Ti |V |Cr | Mn| Fe | Co|Ni |[Cu|2Zn|Ga|Ge |As | Se | Br | Kr
37 |38 (39 |40 |41 (42 (43 |44 (45 |46 |47 |48 (49 |50 |51 53 |54
lRb | S| Y |2 [Nb Mo|Tc|Ru|Rh|Pd|Ag | Cd| In | Sn|Sb Fro 1 | Xe
s5 Is6 |57 |72 |73 |74 |75 |76 |77 |78 |19 |80 |81 (82 (83 |84 86
®lcs|Ba La|Hf [ Ta| W |Re|Os| Ir | Pt |Au|Hg!| T |Pb| Bi | Po| At |Rn
87 |88 (89 [104 [105 [106 (107 [108 [109 [110 [111 [112 [113 [114 [115 [116 117 [118
"' Fr |Ra | Ac | Rf |Db ! Sg|Bh|Hs Mt |Ds|Rg | Cni/Nh| FI [Mc|Lv|Ts|oOg
e c s 59 |60 [61 |62 |63 |64 [65 [e8 |67 [e8 |69 [70 |71
Ce Pr Nd Pm|Sm|Eu | Gd|Tbhb | Dy Ho | Er | Tm | Yb | Lu
A S S 91 (92 (93 |94 |95 (96 |97 (98 |99 [100 [101 [102 [103
Th |Pa| U |[Np | Pu  Am Cm | Bk | Cf Es |[Fm | Md | No Lr

*‘Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC).

© Encyclopadia Britanmica, Inc.




Metallicity evolution of galaxies

We can also use the relative numeric
abundances of elements when discussing
the metallicity :

[ A/B]=logio (Z—;‘) ~logso (N_A)Q

with an alternative notation of the numeric
abundance :

Ny
H

Metals for non-astronomer

Periodic table of the elements
[ Alkali metais [ Halogens Metals for astronomer
B group [[] Alkaline-earth metals [ ] Noble gases
gt [0 Transition metals [ Rare-earth elements (21, 39, 57-71) 18
: 1 (] Other metais and lanthancid elements (57-71 only) 2
H 2 13 14 15 16 17 1 He
3 ry ] Other nonmetals ] Actinoid elements 5 6 7 8 9 10
’l U | Be B N|O/| F |[Ne
TRET [13 s |15 |16 (17 |8
*| Na Mg | 2 4 5 6 7 & 9 10 11 12 | Al ESIREEIEEIRTIN Ar
J© o[22 B e s T2 T (28 (2 [0 |31 (32 34 (35 (36 |
K| Ca|Sc|Ti |V | Cr | Mn|Fe|[Co|Ni |[Cu|Zn |Ga|Ge |As | Se | Br | Kr
37 |38 (39 |40 |41 |42 (43 |44 (45 (46 |47 (48 (49 |50 |51 53 |54
°l Rb Sr | ' Y | Zr |/Nb Mo |Tc  Ru Rh  Pd Ag|Cd  In | Sn | Sb ﬁ'o | Xe
55 |56 |57 |72 |73 |74 |75 |76 |77 |78 |79 |80 |81 |82 |83 |84 [85 |86
®lcs|Ba La|Hf | Ta| W |Re|Os| Ir | Pt|Au Hg | Tl | Pb| Bi | Po | At | Rn
87 |88 |89 [104 |105 |106 [107 [108 [109 (110 [111 [112 [113 [114 (115 [116 [117 [118
"I Fr ' Ra|Ac | Rf |Db|Sg|Bh|Hs | Mt Ds | Rg|Cn Nh| Fl [Mc|Lv|Ts|oOg
o el 50 |60 |61 |62 |63 |64 |65 |66 |67 |68 |69 |70 |71
Ce | Pr Nd | Pm|Sm Eu |Gd|Tb | Dy Ho | Er |Tm | Yb | Lu
SRS 91 (92 |93 |94 (95 |96 |97 (98 |99 100 [101 [102 [103
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Metallicity evolution of galaxies

Excepts for Lithium and Beryllium, metals
are produced by stellar nucleosynthesis
and released into the ISM by SNe and
stellar winds.

Planetary Nebulae

l

The metals injected into the ISM is then
use to produce new stars.

There are two types of SNe :

e Type Il (core-collapse) : stars with mass
larger than 8M leave the Main
Sequence in less than 30Myr, explode in
type Il SNe, and enrich the ISM in «
elements (O, Ne, Mg, Si, S, Ca, ...)

e Type | : stars with mass less than T
8M take much longer to leave the MS,
they evolve as Asymptotic Giant Branch Remnant of type Il SNe
stars (AGB) and then planetary nebulae SN1987 in LMC

and enrich the ISM mostly with C and N



Metallicity evolution of galaxies

o The
Lifecycle -

of a

Each time a star explode, it enriches the ISM in
metals. Then, the metallicity of the ISM (and
therefore of the new born stars) increases with time.

We can then expect that the first generation of stars
(pop Il stars) had a smaller metallicity than stars
currently form in our Milky Way.



Metallicity evolution of galaxies

IN A CLOSED-BOX SYSTEM

This is the simplest model we can use to study the evolution of
metallicity in a galaxy.

We recall the definitions and assumptions we previously made :

The initial total gas mass is M,

The mass in the gas is a function of time : g(t)
- The mass in stars is given by s(t)
- The star formation rate is given by W(t)

- Gas is returned from the stars to the ISM via supernovae in an
instantaneous process at a rate (1 — a)¥

- The fraction of mass locked up in old stars is a

Because we want to follow the evolution of metallicity, we need
to define new variables :

The production of new metals per mass of stars is p

The rate of mass of new metals returned to the ISM via SNe is
therefore : p(1 — a)¥

The total mass of metals returned to the ISM via supernovae
is :
p+2)(1—a)¥

/\

Additional metals Pre-existing metals,
produced by SNe recycled and returned
to the ISM by SNe



Metallicity evolution of galaxies

IN A CLOSED-BOX SYSTEM

From our previous study of the closed-box system, we have
demonstrated that :

dg

i Y+ (1-a)¥ =—a¥

Mmetals ~ Mmetals

Z = =
Mot Mgas

The (ilvolution of mass of metals in the ISM is given by
Z
(92) =p+2)A-a)Y—-Z¥Y =p(1 - )¥Y — aZ¥

/N

Metals produced by star Metals “eaten” by star
formation formation

Combining the previous equation gives :
az a Y = 1-adg Pdg
Yar =P WEZTP T ae T T

where P is called the “yield”, with P ~ 0.5 M

Hence :
d
iz = —p 9
9
This equation can be integrated easily using the following
boundary conditions :
Attt =0:Z=0and g = M,
Then :
Z(t) = —PIn-2-
My

which gives : ,
g(t) = My exp (— F)

(6) = Mo — 9(8) = Mo(1 — exp (= 5)

‘ All these expressions are independent of the SFR,

star formation history and star formation efficiency.
They are simply a consequence of recycling the

metals in the new stellar generation



Metallicity evolution of galaxies

IN A CLOSED-BOX SYSTEM

Stars formed at a time t < t; must have a metallicity less than
Z(t1) since they formed out of gas which was less enriched in
the past.

For example, the fraction of stars with metallicities les than
. _ 7
0.1Zg is gl%en by : s(t)zMo—g(t)=M0(1—exp(—5))

©)
—=1—exp( )zl—exp<——)z0.2

M, - 10P 5

But observationally, the number of old low-metallicity stars in
the disc of the Milky Way is much smaller (<0.01)

b The “G-dwarfs problem”

Our Sun is itself an old G-dwarf star with a relatively high
metallicity.

Applying the same equation to determine the fraction of stars with Z =

%Z@gives:
Zo
S(<_T)_1_ex (-22) = 1 - exp (- ) ~ 03
e P ~ p{—1%)~0

The closed-box model predicts that half of the stars should have a
metallicity Z = %Z@

{Fe /M)

50% predicted

e 3% observed

20% predicted

L I III—_——_—<0.1% observed

\ " 5 1.
U . L 15

J
Age (Gyr)



Metallicity evolution of galaxies

A solution to the G-dwarfs problem

Galaxies have not evolved as “closed boxes”

Gas inflows and outflows, during galaxy evolution,
play a major role

Inflows are the key to solve the “G-dwarfs problem” : by providing additional gas they can prolong star
formation, hence enabling a larger number of stars to form out of pre-enriched gas.



Stellar orbits and spiral
structure

We have seen that star-formation should occur in
regions of overdensities, i.e., where it is more likely
that gas clouds are compressed, perturbated and
collapse to form stars.

Observationnally, we clearly see that star formation
happens in the spiral arms of disk galaxies.




Stellar orbits and spiral

structure

Rotation Curves in galaxy disks

Rotation of stars in a disk is probed by Doppler shift of
spectral lines such as the neutral hydrogen (HI at 21cm)

or nebular optical lines (e.g., Ha)

Observationally, we know since the 1970s that the
Rotation curves are relatively flat with radius

Assuming a spherical model, the mass within the radius r
is obtained by applying the Gauss’s theorem :

v:  GM(1r)

ro 2
Assuming that the velocity is independent of radius, we
get: M(r) o< 1, and then p(r) « 1/r?

—)

= DARK MATTER

' C
1l .

CERIANRCE ITOM QAOCNKE Corer oD

But we have seen that the density
profile in the disc is given by :

p(r,z) = po exp ( r) exp <— l%')

Inconsistency

a



Stellar orbits and spiral

structure

Stellar Orbits

To simplify our analysis, we assume a cylindrically symmetric
model in which the potential is given by ®(r,z) and we
examine orbits initially in the z = 0 plane.

We make the following assumptions :

* The angular momentum per unit mass for each star is
_ 249 _ : :
conserved =1 2 = constant ; where ¢ is the
azimuthal angle

* The energy per unit mass is also conserved :
E_l(dr>2+1< d¢)2+¢( )_1<dr)2+ 2 o0
—2\at) T2\"ar YEo\ar) T2 Y
* The equation of motion in the radial direction is just :
0%r (661))2 0D
acz ' \dt or

It is also useful to introduce the effeé:tive potential :
[
o, =0+ —
¢ 212

Hence the radial equation of motion becomes :
d%r D,

ot2 ar

In a uniform circular motion (no acceleration and r=cste)
then :

0°r
FIO
Hence :
b, 0D 12
or ' e 12

Given a ®(r), or equivalently a mass distribution, we can
calculate the properties of the circular stellar orbit at any r



Stellar orbits and spiral

structure

At a radius r, the angular velocity of the circular orbit is given by :

a )2_12_1ac1>
/ Tt ror

A star when perturbed will undergo small motions about this
circular orbit.

Write x = r — 1y and expand the effective [Z)otential about 7y:

00, 1 ,[(0°®, .
O, (x) = D, (1) +x( — )TO +ox < — ) +0(x?)
0
=0
circular orbit
_ 3,

: . 0% :
The radial equation (# = ) is then

d%x D, (62¢e>
__ —
T

9tz ox dr? '

The previous equation has the form of the Simple
Harmonic Motion (SHM) :
0°x , ]2
9t2 = —XK o, =0 +—

212
with k the epicyclic frequency, defined as :
- 92D, B 0°d N 312
= o |orz o or4
T r

0

0
2 _ 2 _ 192 .
or Q(r)s = 4—56r,then.
K? = r—+4£22] :402[1+

To

r 00
2Q drl,,

Similarly, we can show that for small amplitude motion out
of the plane of the disc, the star undergoes SMH with :

5 0°d,
v =
0z2
r=rg,Z=2Zg




Stellar orbits and spiral
structure

Resonant Orbits

In general, spiral structure is complicated, but one
important physical idea is the concept of resonant orbits.

Near circular orbits is superposition of pure circular orbit
plus radial motion.

In the lab frame, after one radial oscillation of period T, =
21 /K the orbit will have precessed by A® = QT..

The orbit closes if A® = 27

In general, the orbit will not close if A® +# 2m, but consider
the situation in a frame rotating at (1,,- the pattern speed, in

this system the orbit precession is :
AP, = AD — O, T,



Stellar orbits and spiral
structure

Resonant Orbits

For the orbit to close after m radial oscillations, we require :
n2r = QmT, — Q,mT,

Hence :

Interestingly, in many systems (e.g., flat rotation curve in
disc galaxies) the form of Q(r) is such that forn =1,m =
2,{Q0,is nearly constant across the disk, i.e., all epicyclic

orbits close at all radii.

In this case, we can arrange the phase of the orbits so that
adjacent stars in certain regions of the disk have a higher
density, and put them on the n = 1, m = 2 perturbed orbits
: these will then be long lived




Stellar orbits and spiral
structure




Summary of Friday's lecture

' ]
dg . 1
—=—a¥Y+ P - A¥ ~ 3 *‘
dt / T .\ . ("\; f,
: , | Inflow, ® .- -
Star formation Inflow Outflow ‘ ; }
; = J
SK relation : ; , 1
SFR < My ' !
! =
49 +d— 2 |
— = —QE€ — A€ ?
dt 9 9 |
At equilibrium ) i _
M(gas) l 1

fgas

= ~ Gas mass,
M(gas) + M(star) aet g
Independent of

inflow and
outflow rate

Star-Formation rate , ¥



Summary of Friday's lecture

Mmetals ~ Mmetals

7 = ~
Mot Mgas
Galaxies are not
The G-dwarfs problem evolving like
Ny losed boxes :
12 +logA/H = 12 + lo (—) e o closed boxes :
gA/ 510 Ny oal v ] » outflows and
| s inflows are taking
‘ place !

' Abundance ratio with
respect to hydrogen

{Fe/H)

50% predicted
3% observed

05

Lifecycle
o

fa

Nels
20% predicted

iy - ™ <0.1% observed

0 5 10

Age (Gyr)
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Summary of Friday's lecture

Star undergoes Simple
Harmonic Motion in a galaxy

SO .t— NGC 49§.‘., ,,,,,,,,,,,,, —.
'  ——
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250 H s e Y
. | ’*7\\—-“"—- - = & = Miky
N e NGC 1620 iy
S o < gl
-~ e ——
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o 02d,
£ dark mater v? = >
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otatio & r=ro,Z=2g
<0 \at ¥
0 S 10 3 ) 25

Stellar orbits in galaxy could be
resonant to a rotating potential
caused by an external perturbation




An interesting "JWST-discovery”
From last week!

A (obs.) fum]
)

Discovery of a quiescent galaxy at z-7.3

Tobins J. Looser' ", Francesco D'Exgenio’”, Robetto
Mascdino®* -, Jorss Witstok'#, Lester Sandles®#, Emma

Key inferred properties PROSPECTOR

log1g(M, /M) 8.7° g;

log10(SFR [Mg /yr|) 2653

log10(Z/2) 1.7° :',J::

tquvm.h I-\lyrl 38 ‘l‘l’l

; tfunn[ht.vrl 116 '4-:

d +0.1

i, Av |mag] 0.1 90
5 1
> EE—) "1 Iy 5 - Eoa

A (rost) fum|



Stellar orbits and spiral

structure

Stability of a rotating disk — spiral density waves

One manifestation of unstable discs are spiral density
waves.

The Euler’s equations for an ideal fluid in cylindrical

coordinate system are : dv
Par & p(v V)V = —VP — pVd,

-radial equation :

av, v, vg v, p dp, Op
P ot TP Y P30 ~ 70T P Tor
- 0 equation :
dvg dvg Vg avg p 16q§g 1dp
Pt TPV o TP a0 T Ve r = TP 50 T 7 a0
And the equation of continuity : v +V.(pv) = 0

dp 19 19 dt
3¢ T 75, (rvr) + == (pvg) = 0

We are not interested in the vertical structure in the disc,
and therefore we projectzthese equations into a 2D form by
integrating th sure in the z-directi d assuming all
of the mass s concentrated in a plane. ¢

We also agsume ‘pzend nce of the
velocities on z, then this mtegratlon gives identical
equations except that the density and pressure [are replaced

by : [
p(r,08,z,t) =0(r,06,t)6(2)

And
szpdz

X-ans

Disc surface density



Stellar orbits and spiral

structure

Stability of a rotating disk — spiral density waves

The unperturbed solution is an axially symmetric rotating
mass distribution, o, (r) with vy(r,8) = (0,7Q(r)) and an
unperturbed potential ¢4

Perturbation Analysis

Adding small perturbations which are all functions of r, 6
and t :
v=v+1rQd)
o=o0y(r)+a'(r,6,t¢t)
¢g = ¢g0 + (,bé(?‘, 0,z,t)

where g, (r) and ¢'(r, 0, t) satisfy the Poisson’s equation :

Vipgo = 4nGoy5(2)

Vipgy = 4nGo'(r,0,t)5(2)

P is a force per unit length and is the equivalent of a
pressure in 2D. We assume an isothermal-like equation of
state and write :

= aso

7N\

Stellar velocit .
y Disc surface density

dispersion

If we keep only terms to first order in small quantities :

- Radial u:
dou _du ai 0o’ 0¢y
— 40— —2v0=— —
T
- Angularv Epicyclic frequency
6v+Qav ig_ a 9o’ 10¢,
ot 60 20 1o, 00 r 00
- Continuity :
00’+16( )+aoav+ﬂaa'_0
ot "ror- YT 790" Va0



Stellar orbits and spiral

structure

Stability of a rotating disk — spiral density waves
Perturbation Analysis

We now look for spiral-like solutions writing :
o' = dexp (i(a)t —nb + ‘P(r)))

with similar expression for u, v and ¢,

Basic properties of solutions :

The maximum in the density occurs for wt —nf + ¥Y(r) =
0. To understand the implications of this form, consider t =
0, then the locus of the maximum density has :

-
 n0 = W(r) which is a spiral pattern which represents an S —
n-armed spiral
* The pattern makes an angle to the 6 direction, the pitch
: dy
angle, tan a = % = % where we define k = o — The pitch angle is the angle between the

"ar

tangents to a spiral arm and a perfect circle



Stellar orbits and spiral

structure

Stability of a rotating disk — spiral density waves
Perturbation Analysis

The spiral-like solution make Euler’s and Continuity equation
simple, however solving Poisson’s equation is more difficult.

The solution can be found is what is called the tight-winding
approximation when % K1

The resulting dispersion relation is :
2
k> —n%(Q, — Q)" + k2ag = 2nG|k|o,

VA T A

Epicyclic frequency Pattern Velocity Surface

speed dispersion density

Re-arranging : ,
n?(Q, — Q)" = (w —nQ)? = k? + k?a§ — 2nG|k|a,

In the special case of rotating axisymmetric disk (n=0):
w? = k% + k?aj — 2nG|k|o

gravity



Stellar orbits and spiral
structure

Stability of a rotating disk — spiral density waves

Perturbation Analysis

The solution dispersion can be re-written as :

2

W ka5 2nGlk|o,
— =1+—0- 2
K K K
Or
w? 2 k? k
S
K 4 ki kg
where :

e (Q is the disc stability parameter
_ 2kray  Kay

K G oy

e kg is the Toomre wave number :

Kt

KZ

N 2ntG oy

The division between stable and unstable solutions occurs
when w? = 0 or:
|k| 2 ( 1)
—=—\14+ (1 - 0%)2
* This only has a solution for |k| when Q < 1. In this case
there are regions where w? <0, hence spiral
perturbations grow exponentially, yielding the collapse of
clouds, likely resulting into star formation.

e When Q>1 - w? >0V |k|and the disc is always
stable. The latter condition can be expressed in terms of a
minimum velocity dispersion that makes the disk stable :

Q KQg > 1 - T[GO-O
= = Ay = Agmin = ———
G o, 0 0,min ¥
Or that the maximum surface density for stability is :
Kag
0o < 0, = ——
0 0,max T[G



Stellar orbits and splral
structure

The higher gas density on the spiral waves can make
09 = 00,max

2krag  Kay
Q=
k  nGoy,

0<1

!

Gravitational instability

!

Star Formation




Stellar orbits and spiral

structure

We have seen previously in the Schmidt-Kennicutt
relation that there is a surface gas density threshold for
star formation.

This threshold can be explained in terms of gas surface
density below the critical surface density in the outer
parts of disks, making the gas stable and therefore
avoiding star formation.

ZkTaO Kag

k  nGo,

){r—l kpc-7

Lsrr [Mc-)

N

4 T T T Y T T Y Y T
1

» M51 (Kennicutt et ol. 07)

1 T I T 1 T

Apertures

Non—starburst Spirols (Kennicutt 98) — Globaol

[

T T

Radiol Profiles

4 T I 1 |

" @ M51 (Schuster et al. 07), NGC4736 & NGC5055 (Wong & Blitz u?)"
NGC6346 (Crosthwoite & Turner 07) -

T v

! (PR )

.'. &
A Storburst Golaxies (Kennicutt $8) — Globol : AAA “A
¢ LSB goloxies (Wyder et ol., in prep.) — Global .- 4 2
A
Fa
'ﬁ
1 5 ' 1 ' L ! 1 . 1 l 1 'S 1 l
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4 ~"2
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Stellar orbits and spiral
structure

Lindblad Resonances Then :

K . 2
The full dispersion relation is given by : Qp =0 — —c LllnErs Lindblad resonance

2
n?(Q, — Q)" = (w0 —nQ)? = k% + k?a — 27nG|k|o, * 0, =0+ Sz outer Lindblad resonance
and can be re-Wri'glen as : * O, = Qis called corotation
kr

which is now a quadratic equation in | k|

200 | ! km/s/kpc

Assuming ay = Qg min, to have a real (and positive) solution 150 | \ T
for | k| (wavenumber of spiral waves) it is necessary that : '

1i;—l(ﬂp—ﬂ)20 woé o

Therefore : 50 [ Iy



Stellar orbits and spiral

structure

Lindblad Resonances

K . .
. Qp =0 — Z: inner Lindblad resonance

. Qp =0+ :C—l: outer Lindblad resonance

. Qp = () is called corotation

We only have spiral density wave solution between the
inner and outer Lindblad resonance (where we have spiral
arms in a galaxy)

'COfOlaUOf'I

Q=0

inner

: outer
Linciblad ~ Lingdblad
resonance
rescnance

Q,=Q-x2 /g =0+w2
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In the local Universe, only 4% of the baryons have
been converted into stars.

But gas cooling and gravitational collapse theories
predict that over the entire life of the Universe 80%
of the baryons should have been converted into
stars.

Some mechanisms must have been responsible for
suppressing the formation of stars and/or removing
gas from galaxies

. Negative Feedback




Stellar Winds

Mass loss from massive and evolved stars occurs in
the form of stellar wind.

The properties of the stellar wind depend on the
star :

* Post-main sequence stars nearing the ends of
their lives often eject large quantities of mass in
massive (M > 1073Mgyr~1) but relatively slow
winds (v < 10km s™1)

2001 /04 /01 00:06




Stellar Winds

Winds from Massive O and B stars

lower mass loss rates (M < 10‘6M®yr‘1 ) but very high
velocity (v > 1000 — 2000 km s~ 1).

Winds are driven by radiation pressure on the resonance
absorption lines of heavy elements such as carbon and
nitrogen.

These high-energy stellar winds provide significant
feedback

The winds drive shocks into the ISM — two-shock
structure :

- The freely-expanding stellar wind hits an inner termination
shock, where its kinetic energy is thermalized, producing
10°K, X-ray emitting plasma.

- The hot, high-pressure, shocked wind expands, driving a
shock into the surrounding interstellar gas

- If the surrounding stellar gas is dense enough, the swept-
up gas radiatively cools far faster than the hot interior,
forming a thin dense shell around the hot shocked wind.
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Stellar Winds

Winds from Massive O and B stars

About 20% of the energy of the stellar wind is converted
into kinetic energy of the surrounding ISM.

Additional feedback from O and B stars

These are massive stars, with high luminosities and high
temperature, producing a large number of ionising photons :

* Photoionisation, and hence heating of the ISM

* Strong radiation pressure onto the dust in the ISM clouds
can drive powerful winds, which eject gas out of the galaxy
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SuperNovae

Stellar winds represent a minor fraction of feedback
processes in galaxies which are actively producing very
massive stars.

Stars with mass M > 8Mg will end their lives as
supernovae which have a dramatic effect on the galaxy.

The total energy input to the ISM from each SNe explosion
is of order 1043 — 10%4).

Moreover, SNe also release into the SNe processed stellar
material, and are therefore responsible for an increase of
metallicity.

Typically, one solar mass of stellar material is ejected back
to the ISM

The effect of SNe explosions is both to heat the ISM
through shocks and to drive powerful winds .




SuperNovae

VLA image showing SNe remnants in the Milky Way



Starburst and ultraluminous
galaxies

In a starburst the measured rate of star formation is so
large that the available gaseous fuel would be used in much
less than the Hubble time (often within = 108 yr).

Ultraluminous Infrared Galaxies (ULIRGs) are the most
extreme cases of starbursts: they have far infrared
luminosities greater than 10'“L 4 and inferred star
formation rates of order 50 — 1000 M yr~*

The Star Formation is concentrated in a nuclear region (a
nuclear starburst). The associated SNe drive a galactic-scale
outflow of hot gas which is clearly visible in the X-Ray, in the
ionised gas, but also in molecular gas.




Stars

X-rays, very hot gas



Global stellar feedback

Stellar winds, photoionization and supernova explosions
have a cumulative effect of suppressing star formation, i.e.
have a negative feedback effect onto star formation.

Heating by shocks and photoionization makes the collapse
and fragmentation of molecular clouds more difficult
(because efficient cooling requires radiation from molecules
and dust which are often destroyed in these environments)

Galactic winds (mostly produced by the cumulative effect of
SN explosions and radiation from young O-B stars) expel gas
out of the galaxy, hence remove fuel available for star
formation

The latter mechanism is most important in low mass
galaxies, for which the gravitational potential well is not
deep enough to retain the gas.



Feedback from Supermassive
Accreting Black Holes

Stellar black holes result from the collapse of massive stars :

result from the collapse of a star whose mass, after the
mass loss during its evolution is larger than 3 — 4 M,
(which can result from a progenitor MS star of M > 8M;

The most massive stellar black holes have masses a few
/several ten M (see LIGO results)

Collapse of very massive primordial (pop Ill) stars are
expected to generate much more massive black holes up to
a few ~ 100M, (both because the progenitors are much
more massive and because the low metallicity greatly
reduces the mass loss during their evolution).

Supermassive black holes are in galactic nuclei and have
masses M > 10°Mq. They must have originated from
accretion or merging of smaller black holes.

Black Holes of Known Mass

A

X

X-Ray Studies

GW150914

LVTi151012
GW151226



Feedback from Supermassive
Accreting Black Holes

Do we have observational probes of the presence of a
supermassive black hole in the Milky Way ?

The luminosity in the Milky Way seems brighter at the
galactic center.



Feedback from Supermassive
Accreting Black Holes




Feedback from Supermassive
Accreting Black Holes

The stars are orbiting around an object
with a mass of 2x10°Mqgwith a size
R < 125 AU

leading to a density of 5X10°Mgpc~3

I Supermassive black hole




Feedback from Supermassive
Accreting Black Holes

Do we have observational probes of the presence of
supermassive black holes in other galaxies ?

Supermassive Black Holes are present in the nuclei of most
galaxies, and their masses are found to be proportional to
the mass of the stellar spheroid (bulge or whole galaxy in the
case of an elliptical galaxy) in a ratio of Mgy ~ 10‘3Msph

First picture of a supermassive black hole in M87
MBH == 6.5X109M®



Feedback from Supermassive
Accreting Black Holes

Accretion onto supermassive black hole

Because of angular momentum conservation gas accreting

onto a black hole forms accretion disc. X-ray Emission

Corona
Viscosity allows elements of gas to convert gravitational \ Reflected
energy into thermal energy £ X- rays
— gas particles moves towards inner orbits within the disc = \/\/i
N

Thermal energy heats the disc to temperatures in excess of
10°K : :

Accretlon Disc
Strong UV thermal (black body like) radiation 'nfa”'ng material)

Black Hole

lonisation of the circumnuclear medium
—> strong nebular emission line



Feedback from Supermassive
Accreting Black Holes

The resulting energy production can be so powerful to
outshine the light from all stars in the host galaxy
- Quasars !

More generally , nuclear phenomena associated with
Supermassive Black Hole accretion are called Active Galactic
Nuclei (AGN)

I 1% | T | ! !

:
E \ Mg L™
LML T
% “\./\l‘v\ ,". Tpp—
/ l o W WY l l 1
i | P Rt “‘jk.\ W, i\ 4
" \N“""\‘: M Typical quasars spectrum, showing prominent nebular lines emitted by
,r e e 1 the circumnuclear gas photoionised by the UV radiation emitted by the
T e em e accretion disc.
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Summary of Friday's lecture
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Summary of Friday's lecture

AN ISSUE WITH OUR CURRENT MODEL

- 4% of the baryons are in stars.
- Whereas 80% should have been in stars

Negative Feedback

Kinetic energy is converted into heat, and therefore
suppress the star-formation...




Summary of Friday's lecture

ACCRETING BY A BLACK HOLE

X-ray Emission
; Reflected

Accretion Disc
(infalling material)

Corona

Black Hole



Feedback from Supermassive

Accreting Black Holes

The Eddington Limit

To have accretion, the gravitational force must be larger
than the radiation pressure.

The radiation pressure is dominated by Thomson scattering
of photons on electrons

Gravitational pull on the gas dominated by protons

Therefore, the condition for accretion is :
L o, GmyMgy

4rtr? ¢ r2

Then the condition for accretion is given by :
4mtcGm,

L<Lgyy= O.—MBH
e

Adding some numerical values gives :

Mgy
L ~ 3x10% L
e <M®> ©
which could be inverted to give the minimum black hole

mass associated with an accretion luminosity :

L
O




Feedback from Supermassive
Accreting Black Holes

f P
Mass to energy efficiency \ /

First, let’s compute the efficiency for nuclear fusion reaction
in stellar interiors :

p-p chain inside the Sun 4 'H — *He + 2y + 2v, Q /0 ﬂ ?

Initial mass : 4Xm,,=4x1.0078 amu=4.0312 amu
Final mass : my,=4.0026 amu \/l ' \
Mass converted into energy : Am=0.0286 amu ; ;
: : ‘ He He‘
Atomic mass unit i
~ 1.66x10727kg
L
Efficiency of Mass to Energy conversion : 2\
Am
Enue = —— = 0.007 = 0.7% ‘H@ ‘@H
4m,

b Nuclear reaction inside stars are not very efficient in
converting mass into energy




Feedback from Supermassive
Accreting Black Holes

Mass to energy efficiency

Now consider an element of mass dm in the accretion disc
moving from orbit with radius r 4+ dr to orbit with radius r.

According to the Virial theorem, half of the variation of

gravitational potential energy must be radiated away :

1GMdm ( 1 GMdm)

gy =—= -
dEraq 271 +dr 2 r

where M is the mass of the central black hole.

The resulting luminosity is therefore :

dE.., 1 _dM,1 1 1 . dr
dL = =—GM ( )ZE}MMT_Z

r r4+dr

dc 2 dt

Accretion rate

Integrating :

Rin 1 (1 1_) 1GMM
Rin Rout

L= dL = -GMM ~ —
2 2 R,

Rout

The efficiency of conversion of matter into energy is given
by :

L = eMc?
with
GM
E e
2C2Rin

From general relativity, for a non-rotating black hole, the

innermost stable orbit is
6GM

CZ

R, = 3Rgep, =

Therefore € ~ i ~ 0.1 =2 10%

b Much larger than efficiency of nuclear reaction



Feedback from Supermassive
Accreting Black Holes

1
~—=0.1> 1009
€ 17 )0

This is why BH accretion from a “tiny” region can outshine e
stellar light of the whole galaxy.

Then, a black hole of mass Mgy, in the process of accreting

matter must have radiated an amount of energy :
EBH = 01 MBHCZ

Gravitational binding energy of a bulge or spheroidal galaxy
of mass M is given by :
Egal ~ ]wgalo-2

N

Stellar velocity dispersion
(typically 400km/s)

Since Mgy ~ 1073 Mgy, it follows that :

E L /C\?
E§Z=1o ‘()

Then :
Epy

> 80
Egal

b Much larger than efficiency of nuclear reaction

The energy produced by the growth of the black hole
exceeds the binding energy of the galaxy by a large
factor. In principle, black hole accretion seriously harm
its host galaxy.



Feedback from Supermassive
Accreting Black Holes

AGN can provide powerful feedback onto the host galaxy and surrounding
medium in two forms :

- when it’s radiating at Quasar-like luminosities, radiation pressure can
produce a powerful nuclear wind, which shock the ISM in the host galaxy
= heating and outlows expels the gas out of the galaxy. Detailed
calculations show that powerful quasars can completely clean a galaxy out
of their ISM

- when the accreting black hole produces powerful radio-jet then the

energy injected into the intergalactic and intracluster medium keeps such
medium hot, preventing it to cool and feed the central galaxy with new gas

Such heating of the gas in the halo, preventing it to cool, results into
“starvation” of the galaxy.




Feedback from Supermassive
Accreting Black Holes

1) =

Which is the dominant effect ?

)

dex

Answering this question depends on the mass - 1077

of the galaxy

] ,‘\]Iu'

()4

(|

94U

>
maximum efficiency e
e Bell €1 al. 2003 SMF
wwes Millennium Sim (M., - fi)
| | |
9.5 10.0 10.5 11.0 11.9 12.0

log ol MIM.))

12.5



Galaxies interact
triggering star for

Chapter 8



The most luminous galaxies in
the Universe (ULIRGs) and most
powerful AGN always show
highly distorted morphologies

indicative of strong galaxies

interactions or advanced
galaxies merging.

inferacing Gaaxes




Collisions between stellar

system

Stellar collisional cross section and relaxation time

We start by estimating the collision cross section for

strong gravitation interactions as follows :

 We identify a pair-wise collision as one in which
the star is significantly deflected

e This will occur if :

2
1 2Gm

—muve ~
2 T

which gives the scattering radius :
2Gm

12
* The effective cross section is therefore defined as :

5 2Gm\*>
- ~n(v2)

rs ~




Collisions between stellar
system

Stellar collisional cross section and relaxation time E

Note :
. 1
- The mean free path for strong collision is A = —

v

e A
- The collision timeis t; = — 2 G 2
o~ n(20)

or 12

‘U3

—2 B cssssessssassssssanssssassss
ts = mezmzn|” 4X107yT (10 :m/s)g (I\Z;) (1p:‘3) 1

Much longer than Hubble time = strong gravitational
collisions do not occur



Collisions between stellar

system

Stellar collisional cross section and relaxation time

Now we consider interactions which give rise to small
interaction, e.g., a star which is almost undeflected.

In this configuration the gravitational force is given by :
B GmM GmM

- dz b? + w22

The net force over the interaction is perpendicular to
. : b
the direction of travel (F;, = Fsinf = FE) and for an

impact parameter b, we have :
GmMb
Fy

= (b2 + v2t2)3/2

Then, according to the Newton’s second law of motion :

. dv
BT,

Then

Fo GmMb __dvy
L= M ar




Collisions between stellar

system

Stellar collisional cross section and relaxation time

GmMb d

Integrating over all encounters :

Integrating over the interaction gives : L=y = " g
A 1 j+°°F a 2Gm
v, = — =
L=y . i

bv

The momentum is conserved by the fact that the
second star (here assumed stationary) must have a Av;

in the opposite sense.

As the star undergoes many small deflections, we may

assume they are in random directions giving :
< AUJ_ > = O

Hence :

| - The number of collisions with b = b + db is :

dN = n X vt X 2rbdb

[ \ Area of the

Density of stars annulus between

Distance travels impact parameter
by a starintime t b and b+db
bmax 2G6m 2
< Avé > = j ( ) nvt2mwbdb
Do i bv
2 5 min
G mnt (bmax
= In
v bmin



Collisions between stellar

system

Stellar collisional cross section and relaxation time

Defining :

b
InA = ln( max)

bmin

After a long enough time, the star’s perpendicular
speed will (on average) grow to equal its original speed.
Define this as the relaxation time - time required for
the star to lose all memory of its initial orbit.

Set :

8mG*m?nt
V2 =< Av? > = ” In(A)

The relaxation time is therefore given by :

U3

- 8mG?m?nln A

Ly

Remember that the collision time is defined by :
3

. v
S AnG2m2n
Hence the relaxation time is :
ts
t, =
2InA

b Frequent distant interactions are much effective at
changing the orbit that rare close encounters



Collisions in stellar systems

We can quantify the degree to which stars interact using the  From the virial theorem :

collisional relaxation time 1 G (Nm)?
¢ 2X —Nmv? = ———
t, = S 2 R
2InA which gives :
v?R = GNm
We first need to estimate :
b :
InA = ln( max) Then : 5
binin A= bmax _ B v

. . . bmin Ts Gm
For an isolated system of N stars, and size R, we can estimate :

bmax ~ R S The typical time for a star to cross the system is defined as
byin ~ 75 for consistency (r; ~ —-) the crossing time :

R
tcz;

Scattering radius




Collisions in stellar systems

The density of stars per unit volume is given by :

N
n =
%nR3
Then :

34 53
tT' v Ung’R N
PR 21772 =
tc R8mG*m*NInA | N

2

For a typical galaxies with N ~ 101!stars, the crossing time is
t. = 107 — 108 yr and the relaxation time t,. ~ 108t, which is

much longer than the Hubble time.

Similarly for a globular cluster, we find that t,, ~ 101%r

Q

< | =

)

Most of the stars systems are collisionless.
The Sun is a good example !



Collisions between stellar

system

Dynamical Friction

The dynamical friction is loss of momentum and kinetic
energy of moving bodies through gravitational
interactions with surrounding matter in space.

Recall the result we obtained for the change in velocity
perpendicular to nearly undeflected path of a particle of

mass M as it passes a mass of m :
2Gm

bv
By conservation of momentum, the particles of mass m

should also suffer a change in perpendicular velocity of :

2GM
Av, = bv

AUJ_:

The total change in kinetic energy of the system due to this
change in perpendicular velocity is :

M (ZGm)Z m (ZGM)Z _ 2G*mM(M + m)
2\ bv bv ) b2v?

AEy | = +
k,L 2

This energy can only come from the forward motion of M, i.e.
AEj., + > Avf = 0, but

1
SA(F) = vy = v Ay

Hence :

AE,, 2G*m(M +m)

_Av” ~ Mv” b2v3



Collisions between stellar
system

Dynamical Friction

Finally, we again integrate over all impact parameters The relaxation time :
and obtain : v v3
t,. = =
dv _ meaxnv 2G*m(M + m) 2bdb " vl 4mG2MplnA
ac  J, . b?v3
min . g g . . . .
AG2(M + m)p This will be the timescale on which dynamical friction acts to
= In

2 dissipate the bulk kinetic energy of the interacting systems
and allow the galaxies to merge.

We can now apply this model to the interaction of two

galaxies :

- Take M the mass of an entire galaxy

- p = nm as the density within the interacting galaxy



Interacting galaxies

Many galaxies
including our own
are interacting

gravitationally.

The Milky Way is
interacting with
several low mass
systems including
the LMC and the
SMC.

In many cases, the
effects of these
interactions are
relatively small.




Interacting galaxies

M51 is probably the best example
showing how interaction with smaller
mass companion could influence the
shape of the main galaxy.

The well defined arms in M51 are the
consequence of the interaction with its
companion on the right.




Interacting galaxies

LEDA 62867 and NGC 6786 are two
interacting spiral galaxies, with well
defined arms.

Simulations of this system predict that
it will lead to a merger in few billion
years.




Interacting galaxies

Arp 256 is another interacting system,
for which Hubble images show blue
knots of star formation which have
been triggered by the interaction.

Note also the characteristic tidal tails
on the left, which are a signature of a
strong gravitational interaction.




Interacting galaxies

At an advanced stage of merging, intense star Note the presence of two tidal tails at nearly right
formation regions appears as long threadlike angles : suggesting this galaxy is the remnant of

structure located between the main galaxy cores. the merger of two gas-rich galaxies




Interacting galaxies




Despite the various morphologies observed in the Universe, the
physics of these processes seems to be relatively simple,
dominated by pure gravitation interactions.

We can successfully model galaxies in this context as being
composed just of colisionless massive particles (stars or dark
matter).

We can apply our analysis of dynamical friction to interacting
galaxies. The relaxation time is given by :
v v
vl 4mG2MplnA
To simplify the analysis, we assume InA ~ 1, and take similar
values to those used in simulations :
- v~ 200km/s
- M~ 101°M@
- p ~10%Mg kpc~3

Ly

t, ~ 8x108yr, consistent with the simulation, where the time between
the first overlap of the discs and the completion of merger is ~ 1x10°%yr.



Summary of Monday's lecture

COLLISION BETWEEN STELLAR SYSTEMS

STRONG INTERACTIONS

1%

t. =
> 4AmG?m2n

b ~ 4X102yr : much longer than the Hubble time

=» Most stellar systems are collisionless.

SMALL INTERACTIONS

m

s
b

e 1\?

”zzﬁA

=» Distant interactions are more
effective to change stellar orbits



Summary of Monday's lecture

COLLISION BETWEEN STELLAR SYSTEMS

~

try N
te 6lng

For a typical galaxies t,- ~ 108t, : much longer than the Hubble
time.

Most of the stars systems are collisionless.
The Sun is a good example !



Summary of Monday's lecture

DYNAMICAL FRICTION

The dynamical friction (also called the Chandrasekhar friction), is
loss of momentum and kinetic energy of moving bodies through
gravitational interactions with surrounding matter in space.

v v3

|0 - ATG*Mp In A

t, =

b Timescale on which dynamical friction acts to dissipate the
bulk kinetic energy of the interacting systems and allow
the galaxies to merge.




Interacting galaxies

The simulation on the right includes a simple model for star formation
which is determined by cloud build-up as well as following the gas in

the galaxy.

The system is perturbed by the passage of a satellite galaxy, but this
interaction will not start a merging process

The conclusions are the following :

- Spiral density waves are induced with a very clear two armed spiral

- Shocks and cloud-collisions dissipate the kinetic energy of the
cloud and gas accumulates on the inner Lindblad resonance

- The high-gas density leads to a burst of star formation

- After a further period of time, the gas dissipates more kinetic
energy and accumulates in the nucleus of the galaxy giving rise to a
second burst of star formation

- Fraction of the gas accumulated in the nuclear region can accrete
onto the nuclear supermassive black hole.

SFR Mg yr!

40 ;

30

R —
| v
Re M3
A 5 <
| “,‘5“". #‘.’s MJ = 10
y Y
05
@0 60 00 w00 ™ 20 40 0 M 100

iteration iteration



ULIRGs as merging systems

ULIRGs are the best examples of merging system : tidal
interactions and merging after the circular motion of clouds
causing cloud-cloud collisions resulting into loss of angular
momentum, which allows clouds to flow towards the center
of the galaxy to feed star formation in the central region,
and often black hole accretion.

Indeed, we observe that, in ULIRGs, star formation is
generally concentrated within few hundred parsecs and that

they host AGN.




The formation of a stellar bar (often triggered by mild galaxy
interaction) could also lead to increase the star formation in
the galaxy :

Nuclear fueling through stellar
bars

The bar is a very strong non-linear perturbation which
can exist within the inner Lindblad resonance

Gas on circular orbits encountering the bar at supersonic
velocities is shocked

Kinetic energy is dissipated and the gas accumulates in
the bar

Orbits in the bar are highly elongated bringing gas and
stars to the nucleus.
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Starting point

For the following analysis, we need to assume :

- an _expanding Universe with the following cosmological

field equations : e < P/pc?
R 4nGp < A

E +2 3 (1+¢€)— § =0

R 8nGp A kc?

R 3 3  R?

- the so-called ACDM cosmology :
-aflat geometry : Qp +Q,, =1
-Qp ~0.7,Q,, ~0.3and Q, ~ 0.044
- the seeds of structure are quantum fluctuations
which are amplified by inflation.

DEFINITIONS TO REMEMBER

le f r
Hubble constant Sl o

\H ~ B
"R Cosmological

' tant

Dark Energy density A« cons
— .0, = A
3H

Q. = P Space

Matter density — 3H*/8rG 2 curvature
kc
1_Qm_QA__R2H2

R(t) -

»

time



Eesa

www.spacetelescope.org



Jeans instability in an
expanding Universe

A comoving coordinate system is a reference frame that
expands in tandem with the expansion of the Universe,
thus factoring out the effect of the Hubble expansion

At the galactic scale, the Jeans instability focuses on/the deviations from
the smooth expansion of the Universe in a co-moving frame.

We expect the deviations to be small, and therefore :

- they can be approximated by a perturbation analysis

- we can use locally non-relativistic equations for the fluid

- we can treat gravitational perturbations as sufficiently small that a
Newtonian approximation is justified.



Jeans instability in an
expanding Universe

DEFINITIONS

Proper distance : corresponds to where an object will be
at a given cosmological time (this distance can change
over time because of the expansion of the Universe)

Differentiating over time :

Comoving distance takes into account the expansion of 2=y = R(t))( +RMy =Ry +v
the Universe (therefore it is not changing over time)
Velocity in I
comoving Veloaty from
The relation between proper distance and comoving coordinates the expansion _
. .. of the Universe Peculiar
coordinates is given by : velocity
r= R(t)x

/ Scale factor

Proper distance Comoving distance



3 billion years ago (scale factor = 0.8)

-,

-

Proper distonce 160 million lighty years

Current time (scale factor = 1)

Proper distance 200 million light years
Comoving distance 200 million light years

3 billion years in the future (scale factor = 1.2)

Proper distonce 240million light years
Comoving distance 200 million light yeors



Jeans instability in an
expanding Universe

In our approximation, we say that locally we can use non-
relativistic equations for the fluid.

Therefore :
ap Equation of
(E)r T VT. (pu) =0 continuity
, u 1
Euler’s

equation (E>r +u-Vou= _;Vrp — Vo

VZCI) — 47TG,0 Poisson’s

equation

4

All these equations are with respect to the proper
distance. We need to transform them to a co-moving
frame.

r=R()x

Transforming the gradient to co-moving coordinates
gives :

1
Vr_) E VX

The time derivative becomes :

(50), = (50), * (50), v s
— ] =S (— —1 . abulated !
at/, \at/, \at/, X

(), =G, =
at), ~\at),  R* X

Hence :



Jeans instability in an

expanding Universe

Let’s start by rewriting the equation of continuity :

dp
— ] + V.. =0
(at)r r (pu)
Taking into account :
V> =V,

And

dp 1 R
6_+va (pv) = _BPE

Change of the density due to/

the cosmic expansion

u=R({t)y+v
Then the Euler’s equation
ou 1
(E)r +u - Vou= —;VTP — Vo
which becomes :
ov 1 R 1 1 )
E-l_ v-V, v+Rv——EV P—RVXCI)—R)(

The last term can be written as :
. 1.
Ry =-RV,x

2=y (1R R 2)
2 B AT AV R
This helps to define a new potential :

1 . 5
¢g:¢+§RRX

The Euler’s equation can then be re-written as :

vl v, I 1VP v
gt TRU VXV TRYT TRy XN TRVXTY



Jeans instability in an

1
V,—» =V
expanding Universe S
The Poisson equation
V2D = 47tGp
Is now given by :
We can now re-write the cosmological field equations and 1_, 1_, L= o
include the mean density of the Universe p ﬁv Py ﬁv ((D i ER Ry )
R 4nGp A
R Rt 3 1+e)- 3= 0 But in spherical coordinates :
R\> 8165 A kyc? 2l ,_ 10 <X25X2>_
i = Yo X =5 =3
(R) 3 3 R2 2 2x“ 0y dx
Using the Poisson equation and the field equations , we
get:
€ = 3P/pc? and d4 & %VZCD = 4nGp — 4nGp = 4G pA
\ where we have for the density :
In our approximation of a non-relativistic fluid, and at p=p(1+A)
enough early epoch (A is negligible) we have :
R 4nGp

— + — 0 Density contrast
R 3 p—p
A=———
0



Jeans instability in an
expanding Universe

SUMMARY OF THE FLUID EQUATIONS
IN CO-MOVING COORDINATES

The equation of continuity :
dp

+1V()—3R
ot "R 'X* P TTOPR

The Euler’s equation :

ov 1 R 1 1
E+Ev-vxv+ﬁv = _R_vaP _vacbg

The Poisson equation :

1
5 V3 @y = 4nGpA




Jeans instability in an
expanding Universe

We also need to determine the governing equations for the
overdensity.

To simplify the analysis, we will consider that the pressure is
only function of the density, therefore we can expand it as :

., ar _ _
P~ P(p)+ = P(p) + cZpA

From the cosmological principle we have :
VP(p) =0
We can also assume that the sound speed is constant.

Then, to first order assuming small perturbations, we have :

oA 1.
ot "RXUT
W B CSZVA 1y o
ot R1v_ R XS TRYxTg
7 V20, = 476 pA

We now have a set of equations showing the
evolution of the overdensity !



Jeans instability in an
expanding Universe

We now need to determine the time dependence of these
equations (to see how the overdensities evolve with time).

As for the local case, we can determine how the _
perturbation evolve with time, making two assumptions : As in the local case, we can search for solutions of the form :

- Small quantities A = A(t) exp(ikc - x)

- Only first order
and we can demonstrate that the following equation gives
the time dependant overdensity for wave number k = k./R :

We have the following equations :
JA 1

R
e TRVx V=0 -+ 2 t:(4nGp—kchZ)A
L CZVA L
at "R~ R R4

1 _
5 V3 @y = 4nGpA



Jeans instability in an
expanding Universe

THE GROWTH OF INSTABILITIES

We can now contrast the growth of instabilities in a
non-expanding and expanding universe.

We obtain the static case by making the following
assumptions :

- R = 0 (no expansion of the Universe)
- Solutions are of the form : A = Ay expi(k.y — wt)

d*A

W = (47TGp — kZCSZ)A

Then :

tatic universe

We get the same dispersion relation as before :

w? = c2k? — 4nGp
then , as previously, this gives exponentially growing modes
for c2k? < 4mGp, or :

T 1/2
/1 >/11 = CS (G_p)

When A >> 4;, the modes grow like exp(t/7) where 7 ~
(4mG p)~1/2



Jeans instability in an
expanding Universe

THE GROWTH OF INSTABILITIES

We consider now the simplest model of an expanding
Universe : the flat Universe described by the Einstein-
de-Sitter universe.

PROPERTIES OF THE EINSTEIN-DE-SITTER UNIVERSE

QM:]'
R t\2/3 /3 2/3
— = | — =|\—-H
R, (to) (2 Ot)
8mGp
H? =——
3
2
AtGp = —

3t2

To simplify, we also consider the case where the
gravitational attraction is much stronger than the pressure
force, i.e :

ATGp > c2k?

Then we can rewrite the equation for the time dependent
overdensity :

d2A+2 i dA—(4 Gp — k?c?)A
dt R)dr P Cs

such as :
d*A 4 dA 2

dt T3tdr 32

A=20



Jeans instability in an
expanding Universe

dZA_I_ 4 dA 2
dt 3tdt 3t?

‘ R t\2/3 We can modify this analysis to account for the early
R <t_o) radiation dominated phase of the Universe as follow :

- 4mG must be replaced by 322G /3
- In the radiation dominated phase R o< t1/2

A=20

Ro

It is easy to verify that for solutions of the form A o t",

the growing modes have : ‘
2

Axt3xRox (1+2z) !
Then :

AxtxR?x(1l42z)"2
CONCLUSIONS
e Perturbations only grow algebraically
(and not exponentially) with time
e This basic result is similar for other
cosmologies as well.



The need for dark matter

In the early, radiation dominated, Universe when

matter and radiation are strongly coupled, we have :

1 3

Then :

According to Planck
T ~1075
T
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" A(z = 1500) = 3x10~°

After recombination, the matter perturbations grow
via gravity approximately according to the results of
the previous section. Since :

2
Axt3cRx (1+2) 1
Then
A(z =0) ~A(z = 1500)x(1 + 1500) ~ 0.05
p—p

Loms

p This is clearly not the case !
(A > 1)



Summary of the last lecture

- . r=R(t)y
Main goal : study how overdensities evolve in a
cosmological context (i.e. accounting for the expansion dp .
of the Universe) (E) +V,..(pu) =0 Eci‘:‘a;':u';tzf
r
, u 1
Euler’s
equation (E)T +u - Vyou= —;VrP — Vo
VZCD = 47'[6,0 Poisson’s
equation

Eesa @

www.spacetelescope.org

1
Vr—> E VX

), 7T
ot/ , RY X

(),



Summary of the last lecture

Euler’s 617

equation at

~ 3H2

1

_I__

R

dp 1 R
ot TRk PV =30y
R 1
U'VXU-FEU = —R—pVXP —
1 . B _
EVXCDQ = 4-7TGpA

i
R

11 Typos!ll

|

inGp
5 =

Equation of
continuity
1
R Vy®yg
Poisson’s
equation

APPROXIMATIONS

Instabilities can be treated by a perturbation
analysis
we can use locally non-relativistic equations for

the fluid
we can treat gravitational perturbations as

sufficiently small that a Newtonian
approximation is justified.

p=p+A4)

S

Main goal



Summary of the last lecture

oA 1

_ Equation of
E +5 V v=20 continuity
Euler’s v R C2
equation a + — v = _EV A — R VXCDg
1 _ Poisson’s
ﬁ VZ CD — 47TG pA equation

l Solution of the form :

A = A(t) exp(ik, - x)

l /lc kc/R

¥A+2 A—(40
dt R)dt TP

Static Universe :

d?A
Froie (4nGp — k*c?)A
t
exp( )

(4mG p) 2
Modes grow exponentially

Expanding Universe
flat Einstein — de Sitter Universe ; no DM

d2A+ 4dA 2
dt 3tdt 3t?

2
b Axt3cRx (1+2z)?!

Modes grow algebraically




Summary of the last lecture

Todeyt, t = 15 billion yesrs
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Summary of the last lecture
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Perturbations with dark matter

d’A 4dA 2

— A =
dt +3tdt 3t2 0

If we now consider the presence of dark matter and
baryonic matter, then we need to solve the following
coupled equations :

d?Ay,  (R\dA, .
dtz + 2 E F == A,OBAB + APDAD

d2A,  (R\ddAp, .
dtz +2 E F:APBAB +ApDAD

where A is a constant

Valid for both matter dominated universe
and for the radiation dominated case
depending on the choice of the constant A.

d2A+2 : dA—(4 Gp — k?c?)A
dt R)de P s

First case : epoch immediately after recombination
e A=4nG
e Op=1landQp K 1;thenpgAp K ppAp the
second equation is therefore
d?Ap R\ dAp
+2|=)—— = 4nGpp)A
dt <R> dt (4G pp)Ap

we have just discussed
* We write the solution as Ap = BXR where B is a

constant.

We can demonstrate that the equation for Ag is then :

Rz i(R“ ddARB) +292=2p




Perturbations with dark matter

R% d (R'%dAB) " dAp 3B
dR dR dR 2
which has the solution Az = B(R — R,)

Ap = BXR
-1 D
R (1+2) then B = Ap/R

A A (1 Z)
B D Zg

This implies that the amplitude of the baryonic
perturbation quickly grows to that of the dark matter,

no matter how small the baryonic perturbation is at
Z = z,, e.g. at recombination.



Evolution of perturbations

Now we can summarize the process of structure formation at the cosmological scale

After the epoch of recombination, the

perturbations on scales larger than the Jeans barvofﬁlc gas start to f0||9W radiation
length grow as R%since radiation dominated. those in the CDM as we just
have shown t
AxtoxR?o(1+2)2
‘ Aoct?3 «Rox(1+2)1
At this stage, the amplitudes of perturbations in baryonic, The perturbatlons. nov.v srow a.s . R,
dark matter, and radiation are equal since they are coupled however perturbations in the radiation
and baryonic gas are damped
In the ACDM cosmologies, we assume that
dark matter is made of heavy particles t

At a redshift z,, =~ 4x10*Qh*the

Universe switches from radiation to
matter dominated

The cold dark matter decouples from the radiation at »
an early epoch



Evolution of perturbations

10% Re Rrec
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Evolution of perturbations

To get a first estimate of the typical masses of the first The sound speed has been defined at the beginning of
structure, we can determine the Jeans mass just after this course as :
recombination. , SkgT S5kgT
CS = o = e
3 2 3 my
212 21
cski = 4nGp A= A The Jeans mass is given by :
g W = 4m (AJ)S
: 3
with p,, = (1 + Zeq) Pcm
1. = (1)1/2 Redshift of matter-
] S Gp radiation equality

Numerical application gives that the minimum mass of the

first structures in the Universe is M; ~ 3x10°Mg,
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The Power Spectrum of

fluctuations

THE TWO-POINT CORRELATION FUCNTION

The power spectrum determines the mass-spectrum of
the initial perturbations and the initial spatial
distribution of structure in the Universe.

To determine the power spectrum, we first need to
define the two-point correlation function : excess
probability of finding a galaxy (or density
enhancement) at a distance r from a galaxy (or density
enhancement) randomly selected in a uniform, random
distribution.

The number of galaxies in volume dV at r from any

galaxy :
AN(r) = Np[1 + £(r)]dV
Two-point
correlation
Number of Average function
galaxies in dV number density

of galaxies

Which could be rewritten as the probability of finding
pairs :
deair — NOZ [1+ &(r)]dV,dV,



The Power Spectrum of

fluctuations

THE TWO-POINT CORRELATION FUCNTION

The two-point correlation function can be directly
related to the density contrast, and we can write the
density as : Density contrast
p = po[l +A)] A==t
And then the pairwise numbers of galaxies separated
by ris :
deair(T) = p()dVip(x + r)dV;

Hence

ANpqir (r) = p§l1 + AC)][1 + Alx + r)]dV,dV,

By averaging over a large volume (< A > = 0 by
definition => only the cross term remains)

dNpgir (r) = p§[1 +< AX)A(x + 1) >]dVydV,

Inserting :
ANpqir = N()Z[1 + &()]dVydV,
Within the previous equation, gives :

E(r) =< A)A(x+T1) >

deair = N()Z[1 + &(r)]dV,dV,



The Power Spectrum of

fluctuations

THE POWER-SPECTRUM OF FLUCTUATIONS

The Fourier transform for A(r) is defined as :
V =
A(r) = %f Ay exp(—ik - 7)d3k
with

1 —
= Vf A(r) exp(—ik - 7)d3x

Comoving wavevector

Remember thatthe Parseval’s theorem gives :

@ | Pk

< A2 > Density contrast Also noted P (k) :

A :p;_ﬁ Power spectrum of
p the fluctuations
Then :
V
<A >= Ap|?d3k = P(k)d3k

The two point correlation function is spherically
symmetric (d3k Artk?dk ):

14
< A% > _—f 1A, |12k?dk = ?IP(k)kzdk



The Power Spectrum of

fluctuations

We can also write A(x) as a Fourier series such as :
A(x) = A, exp(—ik - ¥)

Remember that, the two point correlation function is
given by :

E(r) =< A)A(x + 1) >
Hence :

5(7") =< Zkzk,AkAk, eXp(—l(l_é — I:,) . .7?) eXp(iE' . 7;)) >

Given the orthogonality of the Fourier basis, the cross
terms vanish except those with k=k’, therefore :

£(r) = A |? exp(ik - 7)
and (in terms of Fourier integral):

§(r) = [ 18x 2exp(ik - 7)d*k

(2 )

2
amplitude of fluctuations 2T

<A2>——f|A 12k?dk

The two-point correlation function is real, therefore we
are only interested in the integral of the real part of the
exponential, i.e cos(k - r) = cos(kr cos )

Moreover, because of the spherical symmetry of the two-
point correlation function, we integrate over the angular

1.
part of the volume element —sinfd6 = spherical

|4 sin kr coordinates
- 2 2
Only allows SC(T) = f | . k-dk
wavenumbers k < %to sin kr .
contribute to the d=—"— J (k dk

The inverse Fourier transform gives the Power Spectrum :

sin kr
Amrr?dr

Pa =5 [ €0
0




The Power Spectrum of

fluctuations

THE INITIAL POWER-SPECTRUM
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From CMB observations, we know that the form of the

initial perturbation is a power-law with no preferred scale
as :

P(k) = |Ag|? o k™

sin kr

2
p k-dk

|4
£ = 7 J 182

Then, the two-point correlation function has the
following form :

E(r) o« fk"+2dk

sin kr
~ 1
kr

forkr < 1

We can therefore integrate k from 0 to k,.x =1/r to
estimate the dependence of the amplitude of the
correlation function :
f(?’) e r—(n+3)
But the mass in the perturbation is M ~ pr3, then :
f(M) o M—(n+3)/3

And the density contrast for a mass scale M :

AM) = < A2 >1/26c y=(n+3)/6



The Power Spectrum of

fluctuations

THE HARISSON-ZEL'DOVICH POWER SPECTRUM

The interest of this particular spectrum is that the
density contrast A(M) has the same amplitude on all
scales when perturbations come through their particle
horizon.

This is the special case where the index of the power
law n=1:
P(k) = |4y |* o< k=1
Hence :
A(M) < M~2/3
And
Eoxr™* o M4/3

EVOLUTION OF THE POWER SPECTRUM

The Power Spectrum is modified from its initial form as
the Universe evolves. It interacts with 3 main
components :

- Baryonic matter

- Non-baryonic matter

- Photons

We define the Transfer Function as the function
describing how the shape of the initial Power Spectrum
in the dark matter is modified by different processes :

Ap(z = 0) = T(k)f(2)Ar(2)

/ NN

growth factor Initial Power
between the Spectrum
scale factor at z
and z=0

Power spectrum at
the present epoch

Transfer function



T<47 kyr
after BB

The Power Spectrum of

fluctuations

Consider an initial power-law power spectrum :
P(k) - |Ak|2 X kn

A critical point in the evolution of the perturbations is
when their size is equal to the horizon size (i.e. the
Universe size).

For a perturbation of size r, this happens when r = ct-
we say that the perturbation has entered the horizon

Before the perturbation entered the horizon (during
the radiation dominated era), their density contrasts
grew as A, < R? on all scales (Monday’s lecture)

rturbations came through the horizon during
the radiation dominated phase, the dark matter
perturbations were gravitationally coupled to the
radiation dominated plasma, and their amplitudes
were stabilised.

Therefore as soon as the perturbations came through the
horizon the perturbations ceased to grow until the epoch of
equality.

After that time all perturbations grew as A, < R

Between crossing their particle horizons at scale factor R, and
the epoch of equality Req, the amplitudes of the perturbations

2
were damped by a factor (:—H) relative to the unmodified
eq
spectrum :
R
Ay < kZ -
eq

Transfer function



The Power Spectrum of

fluctuations R A s
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The Power Spectrum of

fluctuations
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Summary of the last lecture

We defined the two-point correlation
function as the excess probability of finding a
galaxy at a distance r from a galaxy randomly
selected in a uniform, random distribution.

deair = N()2[1 + &(r)]dviav,

p = po[l+ Ax)]

E(r) =<Ax)A(x+71) >

The power spectrum determines the mass-
spectrum of the initial perturbations and the initial
spatial distribution of structure in the Universe.

From the CMB we know that : P(k) = k"
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Non-linear collapse of a
spherical overdensity

. : : As in the classical Gauss’s theorem, in general
Main idea : to model the evolution of perturbations .. .
: : : . ) relativity for a perfectly spherical geometry, the mass
into the non-linear regime, we consider a single ‘ y . ) :

: : inside a sphere is not influenced by the material
spherical overdensity

outside the sphere

Assumptions :

- One spherical overdensed region of radius R, and density pg
- A spatially flat Universe

=> Einstein-de-Sitter Universe with mean density p with a scale factor R
- Take recombination as a reference epoch
- With a mean density in the universe : py, = p(ty)
- Scale factor R
- Mass M, Radius Rg  and density :

3M

" 4nRE

Ps,



Non-linear collapse of a
spherical overdensity

r=R(t)x

Assumptions [..]:
- To simplify the algebra, we choose a co-moving coordinates such that the outer
radius of our spherical overdensity has y = 1
=> hence the scale factor is just the radius the overdensity would have if it
expended with the Hubble flow in our flat Universe
=>Att = t,, therefore Rs, = R,

The evolution of both Universe as a whole and the overdensity are described by the
field equations :

R 47‘[G

A
(1 +e)—==0
<R> 87TGp A kc

R ~ R2



Non-linear collapse of a
spherical overdensity

Background Universe : Einstein-de-Sitter

- k=0,A=0,e=0

- Q=1 5+47TGP(1+(5)—§:0
R [t 2/3_ 3 2/3 R , 3 3
%= = GHor) R\’ 8nGp A kc?
. g2 = 2P R) 3 3 R?
3
— 2
- 4-7'[sz¥

Evolution of the overdensity :

The overdensity means that for the region of the Universe within the radius R the
Universe must be closed (because we have the overdensity) with k = 1

The equation for the radius of the overdensity is :

B,\" 8mGps,RE  kc?
(7)) =5

The evolution of both Universe as a whole and the
overdensity are described by the field equations :



Assumptions :
One spherical overdense region of radius R; and density ps

N O n - 1 i n e a r C 0 1 1 ap S e O f a ?cr;gr;:iic:lr—;e(—ts)itter Universe with mean density 5 with a

Take recombination as a reference epoch
mean density in the universe : py = p(ty)

spherical overdensity e

Att =tg:
- The radius of the overdensity is R,
-  The mean cosmological density is p,

Introducing variables changes :
dt’
R(t"

: : t
- We define the conformal time as: nn = fo c

- Dimensionless radius : @ = Rg/Rg,
8mGpgs R_%

- Aconstant: @y, = — 5"
- We also define the two cosmological densities :

8mG 8mGps
Qg = 3H§S and Qg = ——5°
S So

We assume that the perturbation is still approximately

following the Hubble flow at t = ¢, then :
Hg, = Hy and ps, = Qg po

Mass M, Radius Rg, and density : pg, = %3—
S0

R,\" 8mGps,RE  ke?
R, 3R  RZ

Solution with boundary conditions
for Big-Bang cosmology

R a
a=R—;:7m(1—cosn)
Rs, a
t =ﬁ—m(n—sinr))

c 2



Assumptions :
One spherical overdense region of radius R; and density ps

N O n - 1 i n e a r C O 1 1 ap S e O f a ?cr;sr;:iic:lr—;e(—ts)itter Universe with mean density 5 with a

Take recombination as a reference epoch
mean density in the universe : py = p(ty)

spherical overdensity s

Mass M, Radius Rg, and density : pg, = %3—
So

Critical model
5 - s
Rg a S =1
a=—:—m(1—cosn) g 4+
RSO ..6 ,,/ Q
o e >1
Ly ) s T T
t = — sin 8nG Q -
C 2 T] n -QSO — ;[Hgsﬂ 8 2 P
So w t
The overdensity will reach a maximum T
2

radius R,,, at atime t,, where (n =m): o =955 : | | | 2

o} 3c? Big 2 4 6 Object

R — amRSO mRSO Bang Cosmic Time Formation

So

And - Overdensity collapses to its final state at a time 2t,,,(n = 2m)
¢ Eﬁa mlds, - Point where the overdensity reaches its maximum is turn around
™2 c 2H; (O, — 1)3/2 - Density within the collapsing overdense region at turn around is
0 \*“So 3
Rg 3 Rg 3 Qg,—1
c _1/2 ps(tm) = pSO ( 0) o pOQSO ( 0) — pOQSO ( QZ )
_ ¢ . 0

where Rg = Hs, (QSO 1)



Assumptions :
One spherical overdense region of radius R; and density ps

N O n - 1 i n e a r C O 1 1 ap S e O f a ?cr;gr;:’:;ic:lr—;e(—ts)itter Universe with mean density 5 with a

Take recombination as a reference epoch
mean density in the universe : py = p(ty)

spherical overdensity e

Mass M, Radius Rg, and density : pg, = %3—
So

3 Ps(tm) - (‘QSO _ 1)39502
R R Y
%mw—ﬁ%(%)zmﬁ%ﬁ& =mﬁ%

" p(tn) 3Hyt,Y) -
m Qs, 20 n
- The mean density in the Universe at turn around is /
£ Q
2) RSO ) But Hot = HSO TS

p@m)=po( zm%—ﬂ”2

ius Rsoat
if following

the  smoo cosmological

expansiopat t,,

For Einstein de Sitter cosmology

ps(tm) 3mQs,  \* (95, — 1)3 _(3m\*
g

5 3 2 4
p(tm) 4(050 . 1)2 QSO

2/3




Non-linear collapse of a.: -
spherical overdensity

The collapsed object forms at a time tf = 2t :
- The redshift of turn around : z,,
- The redshift of formation : z¢

Related in the Einstein de Sitter Universe by :
1+ z, _ R(2t,,) _ 92/3 & 159

R « t2/3

The collapse is halted by the internal pressure and the
end state will be determined by the virial equilibrium,
the object will be virialised :

2K, +®, =0

S

Internal energy Gravitational
(thermal + turbulent) potential energy

Critical model

©
S
8 a>1
w3+
Q
S 2
»n .
1
Big 2 4 6 Object
Bang Cosmic Time Formation

If the collapsing object has little kinetic energy at turn
around (i.e. its peculiar velocity is small), the

conservation of energy gives :
GM? GM*  1GM?

K - —
1Rm Y R, 2 R,
hence R, = ERm

- The density will be eight times the density

at turn around (p « R™3)
- Object has now fully decoupled from the

Hubble flow



Non-linear collapse of a
spherical overdensity

The density of the Universe at the formation epoch is given by :

1+z.\°
—_— f D
p(z) = (1 + Zm) )
1+ z, _ R(2t,) = 22/3 ~ 1.59

Hence the virialised density is given by :
~ 5,6X8%Xp(zy) = (1.59)3x5.6X8%p5(zf)

Py
/////j \ 1

ps(tm)

R, =—R
_ ~ 56 v m
p(tm) ’
Finally p, ~ 200 p(zr) ~ 200 p(z = 0)(1 + Zf)3

‘ | The final de-coupled virialised object has a density 200 times larger
than the density of the universe at the epoch of its formation




Application to the Milky Way

We can apply the previous analysis to our Milky Way.
It applies to all the matter and is therefore dominated

by dark matter.

For the Milky Way we know that :
- MDM = 3X1011M@
= RDM = 50 kpC

Calculating ppy (MW and comparing to p(z = 0)
gives zy ~ 2.5




Hierarchical structure

formation

The typical Jeans mass we found is crucial in
understanding the process of galaxy formation.

The structure which initially form in a CDM cosmology
are much smaller than the scale of a typical galaxy we
can observe in the local Universe.

Indeed the initial structures collapse under their own
self-gravity to form dark matter halos

These dark matter halos are of course subject to
gravitational interactions and can merge under their
mutual gravitational interaction to form larger
structures

lllustris is one of the best simulations following this process.






The Press-Schechter Mass
Function

Assumption : primordial density perturbations are

Gaussian fluctuations
Assumptions :
- Perturbations grow according to the linear theory
until they reach a critical density contrast A,
HEME G (eSS O Gaussian amplitude distribution of (de?;:\’ Z?:J:Eiiitn?;w)ad a power-law power
perturbation modes the probabilities : P P P

A2 spectrum P(k) = k™
p(d) = exp [— —] - In a Einstein-de-Sitter Universe :
/ V2mo (M) 20%(M) Qp=1,0,=0

Density contrast :

Perturbations grow as A o< R o t2/3

5
p=L

P
5 2
<A > =< (f) > g%(M)



The Press-Schechter Mass  «wn«woor
FunCtion The mean-squared density contrast in terms of the

power-spectrum of fluctuations is given by :
2

)
For fluctuations of a given mass M, the fraction F (M) of those g?(M) =< (_p) > =< A? >=AM~G+n)/3
which became bound at a particular epoch have A > A, : P
1 +oo A? 1
F(M) = J exp [— 5 dA = =[1— D(t,.)] We can also express t. in terms of the mass
V2o (M) Ja s 2 distribution :
AC AC 5 . M (3+n)/6
with t,., the threshold density contrast in units of the rms te = = 1 MB+/6 = ( *>
, /2 M
density fluctuation : V2o(M) 24 7
. A, 5 4\ 3/ G+
© V2o M" = <A_2>
and ®(x)is the probability integral : ¢
) 2 (X 2 The amplitude of the perturbation grew as A(M) «
CI)x:—fe‘ dt R o t2/3
Vi Jy s
Hence, 02(M) = A%2(M) « t3,0or A o< t*/3, then :
3 4
M* < A3+n < t3+n
et 4/(3+n)
and M™ = M, (a)



The Press-Schechter Mass

Function

The fraction of perturbations with masses in the
range M to M + dM exceeding A, is :

dF = T (6_M) M

because F is decreasing
function of increasing M

In the linear regime, the mass of the perturbation is
M = pV where p is the mean density of the
Universe.

Once the perturbation became non-linear collapse
start and then a bound object of mass M is formed.

The space density per unit mass of perturbations in the mass
range M and M + dM which will become bound is :
dn(M) 1dF  p OF

N == =vam ™~ Mom
F(M) = 1[1 — d(t,)] d(x) = ijxe‘tzdt
2 VT Jg
M\ (B+1)/6 l
= (M) o 2 _,
dx =

3+n

ol

(3+n)/6

1 (M
N(M) = ﬁ(l - %) M_pZ(M*)

|



The Press-Schechter Mass
Function

1 ny B MG/ [ M
NM)=——=(1+7 —( ) ex —( )
(M) 2\/E( 3)M2 M* P1I™\m
* This formalism results in only half the total mass density ] Sy —r g
being condensed into bound objects because of the fact As a function of redshift
that, according to this simple analysis, only the positive ! ™,
density fluctuations developed into bound systems \

 Underlying cause of this factor of two discrepancy is the
fact that the above analysis is based upon the linear
theory of the growth of the perturbations . |-

* Once perturbations developed to large amplitude, mass
was accreted from the vicinity of the perturbation and N-
body simulations show that most of the mass was indeed :
condensed into discrete structures. - ol M)




From the Feedback survey :
what is the difference between Jeans Mass and the Bonnor Ebert Mass ?

kgT
e
M = C1/2 (kBT)Z 1 _ C1/2 a% & _4 ()x( T )3/2 x( ny )—1/2
4 U G3/2p01/2 & p;/zgs/z Mgy ~— \10K 2x1010m=3
Bonnor-Ebert Mass Jeans Mass

Obtained from a perturbation analysis of the

Obtained from a singular isothermal sphere _ ,
fluid equations

and the equation of the virial equilibrium
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The first objects

Following recombination baryonic gas is neutral.
As the Universe expands a number of things
occur :
e The CMB cools proportional to 1/R
hence its temperature is given by :

Temp(2) = Teyp(z = 0)X(1 + 2)

* The baryonic gas not associated with self-
gravitating objects cools adiabatically and
faster than this proportional to 1/R?
since its adiabatic index is 5/3

4
g

(54

Relonisation

e The process of hierarchical structure
formation is occurring all the time with

the merger of dark matter halos to form
ever |arger Self_gravitating Objects At first however, there is no star formation or

formation of black holes and AGN : the universe is
dark apart from the CMB radiations : the dark ages .




The first objects

Following recombination baryonic gas is neutral.
As the Universe expands a number of things
occur :
* At some point the density of baryonic gas
in halos becomes sufficiently large that
the first stars and/or AGNs form

%
g

* The first objects produce UV and/or X-Ray
emission which starts to ionise the
neutral hydrogen outside of the densest
regions. This epoch, when the first
objects form is therefore called the Epoch
of reionisation.

5]

Relonisation

* Importantly, it is observable via the 21-
cm transition of hydrogen redshifted to
low frequencies corresponding to this
epoch.



The first objects

WHAT IS THE EFFECT OF STAR FORMATION ON THE
HYDROGEN SPIN TEMPERATURE ?

At high densities, collisions keep the spin temperature
equal to the kinetic temperature of the gas.

As the density falls, collisions become less important, and The spin temperature is directly related to the
interaction with the photon field determines the spin populations of the ground state of hydrogen :
temperature e xp(— hV21)

ny 91 kgT

Initially these are CMB photons, but once the first objects
start to form, a small UV flux is present and this acts to
excite neutral hydrogen to an excited electronic energy
state. Then, the hydrogen returns to the ground state. The
probability of returning to either of the split levels is
determined by the kinetic temperature of the gas



The first objects

After recombination gas and CMB cool adiabatically,
the kinetic temperature is Ty < Teyp

Initially, the density is large enough that collisions
ensure Tg ~ Tk

As density falls, CMB determines Ts — Tcyp
Overdensity collapse forming the first objects

As first objects form, UV resonant scattering couples
Ts = Tcmp

Gas temperature increases, and so does Ts
heating from stars and AGN

UV and X-Ray flux ionise the gas and T — 0

due to

Redshift 160 80 40 20 15 14 13 1] C 9 8 7 (MK)
& 0 : First galaxies form
= )}
N = : Retonization begins Reionization ends
& .2 S0
2 ~\J |
| - Cosmic time o
L o -100 :
o Heating begins
0 20 40 &0 80 100 120 140 160 180 200



The first objects

* What we observe is the hydrogen seen against the CMB : we
are in the Rayleigh-jeans limit.

* The observe brightness of the 21 cm line is given by :
1
-1

T. —T, 1+ 2\2 d,v
Ty = 27 xy (1 +8,) = CMB( 10 ) ((1+;);1(z)) mk

Ts




Brightness temperature, T, (K)

The first observational evidence

of Cosmic Dawn

Age of the Universe (Myr)
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Baryonic gas in dark matter

halos

Overdensity in the baryonic gas catches up that in the
dark matter :

A=A (1—=
5= Bp(1 - )

This suggests a simple picture for behaviour of baryonic

gas :

* Baryonic gas should fall into pre-existing or growing
dark-matter halos

e Typical infall velocities will be of order the free-fall
speed (~ GM /R) this greatly exceeds the sound speed
in the baryonic gas.

* The gas therefore passes through a shock - a structure
formation shock — and is heated

Critical model

5 - ,
© Q=1
s T
® Q>1
w 3
o)
S 2+
%)

tm
1
Big 2 4 6 Object
Bang Cosmic Time Formation

e The matter forms a virially supported structure of
radius :
1
R,==R,

2
 The mean matter density in the halo is given by :

_ 3
py ~ 200 p(z7) ~ 200 po(1 + zf)
where pyis the total matter density in the Universe at the
current epoch.



Baryonic gas in dark matter
halos

We now assume that matter has a density structure given by The equation of hydrostatic equilibrium for the
the singular isothermal sphere : baryonic gas is :
* “pressure support” for the dark matter we take to be due to id_P _ _ GM(r)
the random motions of the non-interacting dark-matter pg dar r?
particles
* For baryons we have normal pressure support. For a singular isothermal sphere :
_ a? _ 2a’r
The baryonic gas is in hydrostatic equilibrium in this potential P = Srcr2 and M = G
well
Then:
The halo is characterised by its total mass — the virial mass M,, : M, p,R2
* Mass of dark matter : M = g—ZMv p(r) = 4R, 12  3r?
: Int ting :

* Mass of baryonic gas : Mg = g—BMv ntegrating . .

M ! ! I __
* The virial radius of the halo is given by : M(r) = J p(rAnr'?dr’ = M”R_

1 0 1%
3M,\/3 3M, \3
e () < ) o
41tp,, 41t200p0,

py ~ 200 p(z;) ~ 200 p(z = 0)(1 + Zf)3



Baryonic gas in dark matter
halos

The equation of state of the baryonic gas is :

_ PpgksT
U
1 dP GM(r R2
el 2( ) p(r):Pv v M(r)
pg ar r 372
Therefore :
Myp 2
kT, = 2R, X Mg(l + zf)
and
2
M, \3
T, ~ 3.6x10° (wleO) (1+z)K

The growth of halo is done via hierarchical structure
formation.

The cooling of baryonic gas is dominated by line
emission (see chapter 2). In the low density limit the
emissivity is given by :

€ = nZA(T) ~ n2 z iu,i Cul,ihvie'—hV/kBT
. L
l

l

The collisional de-excitation rates have a
temperature dependence in T~1/2, then :

- (T)—1/2
€ = n°A, T



Baryonic gas in dark matter
halos

The cooling time for the gas depends on the radius, and is given by :

2 Pg (T‘) kB 3 _3/2
tc(r) _ u _ 3/.lkB TUZ _ T‘U
n2A(T) 20T, Pg Pg

We find the characteristic cooling time for the halo by averaging over all

the particles in the halo :
3
Ry TZ

Ry
te Mj t (r)pg4nr2dr—MJ pg4nr2dr

2
L
M, " 3 [
2/3 3/2
(M2(1+ 7)) _3/2
X 3 X Mv(]. + Zf)

(1 + Zf)



Baryonic gas in dark matter
halos

Inserting numbers gives :

L _ 6.4x10 (f;[—”) (1+2)""

yr LU kig If t. is much less than t,, we expect all the

I gas to cool = predicts many small halos
Cooling is therefore more efficient in low-mass halos and where all the gas has been converted to stars
those which form at high-redshift

t. and t, have the same redshift

dependence therefore at all epochs the
, . _ _ _ . o low-mass objects cool more efficiently
The Age of the Universe in a Einstein-de-Sitter Universe is given by :

t, = 1.2x101°(1+2,) " Zyr
\ Gas density depends on radius, there is a
radius inside which the cooling time is less
Outside of this radius, we do not expect gas cooling to be than the Hubble time : this is called the

PR
efficient : the cooling radius moves out with time. cooling radius



Baryonic gas in dark matter

halos

STAR FORMATION

Star formation happens in the cool gas which accumulates
at the center of the potential well.

Continuous input to the reservoir of cold gas as the warm
gas at the virial temperature in the halo cools at a rate :

2,2

3
7.ukBTv

Mc,a.cc ~ f Amtr

fgfraction of gas remaining hot
at any time at a given radius.

Accreting gas settles into a disc (conservation of angular
momentum).

Disc forms stars, when its surface density is :
o>"2je. Q<1
G



The galaxy luminosity function
and galaxy populations

The Schechter function (Galaxy luminosity function) 10" § T T T h
L L™
o(B)afl) o (& em(-£)a(2 8
— — | = — | \exp| —— — 10°E —~&_
) “\Ir L \p ) “\Ir T . S
—_ < : O z~9
a~—1;-2 % 10°F % e S z~10
. - =0 : (_)"‘j(? ‘
a ¢ 5
g :
The Press-Schechter mass function = 10 : ?
(3+n)/6 alill ) | o L\
1 n p (/M M\ 3 s | - , NV AN\
v = (14 D) 2 ()T (] e T .
S N ASE AT P1™\m : | |
10'6 S .. [ SN, N | |
L By comparing the LF and the MF we clearly see that, if we 8 9 10
assume a constant mass-to-light ratio, we require n = 3 log(M, /M)

However, the Harrison-Zeldovich spectrum hasn =1 Stefanon et al. (2021)

11



The galaxy luminosity function
and galaxy populations

The problem is even worst :
* Cooling is very efficient in the low mass halos

For halos not much less massive than that of the Milky
Way the cooling time is less than the Hubble time.

4

Low mass halos should have processed all of the gas into
stars and have done so at early epochs

4

Steepen the luminosity function even further !

L

yr

= 6.4x101° (

v

1012M

>(1 +27)7"°



The galaxy luminosity function
and galaxy populations

Also, high mass halos should still be gas rich and still actively
forming stars in all cases since the cooling time is long.

What we observe :
* Massive elliptical galaxies in the local universe with

little gas and evolved stellar population

 Many small irregular galaxies which are very gas rich
and still forming stars — we do observe dwarf
ellipticals but these do not dominate

L It seems that our basic model has some
fundamental problem...or  missing  some

fundamental processes.



The galaxy luminosity function
and galaxy populations

BUT there also some important successes of this model :
* The form of the luminosity function is correct

 The formation redshifts for objects of different mass are correct

* The cooling argument suggests a change in behaviour in mass of order the
mass of the Milky Way :
e This is approximately where the break in the luminosity function occurs.
 The star formation in higher-mass objects is suppressed due to longer
cooling times.

* Very massive halos form late and will have little cooling-observed clusters
have very hot extended gas in a single halo.



The galaxy luminosity function
and galaxy populations

However, the following fundamental problems remain :

Drastically different slope between halo mass function and galaxy mass function

Massive elliptical galaxies are expected to be currently accreting gas and forming
stars while they are passive and gas poor (and with old stellar population)

Low mass galaxies are expected to have processed most of their gas and now be
passive and gas poor, while they are gas rich and star forming

L One key to solve these problems is : Feedback !



Feedback

Including supernovae feedback in our model helps in two ways :
* Energy input heats the gas in the disc suppressing star
formation
* Supernova-driven winds eject cold gas from the disc into
the halo : if the gas is expelled beyond the cooling radius
the feedback can halt star formation

A second process is also effective in suppressing star formation in
the lowest mass halos : the reionisation of the gas from photons
forming the UV background produced by star formation and AGN

activity




Feedback

More sophisticated models require numerical solution to follow the hot and cold gas

N

The process of halo growth is taken from
numerical N-body models. In fact the
basic build-up of the halos follows well
the predictions of Press-Schechter, but
the numerical approach includes the
sudden increases in virial mass and gas
which occurs as halos merge in the
hierarchical structure formation scenario

Reionisation feedback is
also included

Halo structure s
modelled much as
we have described

Sne feedback is
included by simply
heating and ejecting the

Cooling and  star ., gas into the halo

formation are modelled
as we have described

Recently, feedback from
AGN has also been
included as an additional
heating source.



Feedback
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Evolution of the Star-Formation
Rate Density
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The first results from the JWST
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Evolution of the Star-Formation
Rate Density
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A new era in extragalactic
astronomy: early results
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Comments and Conclusions

. * Sub-millimetre (Herschel)

Riechers et al. (2013

)

In this course we have discussed our current
understanding on structure formation in the
Universe, mostly based on advances made over the
past two decades.

Our model has several successes and leads to the
emergence of a consistent picture. However several
concerns arise with these models.

New telescopes (such as the E-ELT, the JWST,
EUCLID, etc...) whose main goals will be to address
all these questions will be commissioned within the
next decades.
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