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Formation of Structure in the 
Universe in a nutshell

How can we heat 
and cool baryonic 

gas cloud ? 

How stable is a gas 
cloud ?

How can we form a 
collapsed object 

from a gas cloud ?

How the first 
galaxies formed in 

the early Universe ?

What are the 
properties of 

galaxies ?

How stars in 
galaxies influence 
the on-going star-

formation ?



Formation of Structure in the 
Universe in a nutshell

Date Topic Date Topic Date Topic

23/01/2023 Introduction 13/02/2023 From gas cloud to 
collapsed object

06/03/2023 Gravitational instabilities in 
the cosmological context

27/01/2023 Physical process in 
baryonic gas (part 1)

17/02/2023 Galaxies and star-formation 
on galactic scales (part 1)

10/03/2023 Hierarchical structure 
formation (part 1)

30/01/2023 Physical process in 
baryonic gas (part 2)

20/01/2023 Galaxies and star-formation 
on galactic scales (part 2)

13/03/2023 Hierarchical structure 
formation (part 2)

03/02/2023 Gravitational stability 
and instability (part 1)

24/02/2023 Galaxies and star-formation 
on galactic scales (part 3)

17/03/2023 Galaxy formation and 
evolution

06/02/2023 Gravitational stability 
and instability (part 2)

27/02/2023 Feedback processes in star 
formation

April 2023 Exam

10/02/2023 Gravitational collapse 03/03/2023 Galaxies interaction and 
triggering star-formation



Supervison
3 groups : 

- 6-8 students/group

- please sign in (email circulating soon)
- 3 sessions 

Group ID
Session 1 Session 2 Session 3 

Date Room Date Room Date Room

1
2
3



Introduction
Chapter 1



The first 3 minutes of the 
Universe

t=0s : the Big-Bang 
t=10-36 to t=10-32s : inflation

- emission of gravitational waves 
- emission of density waves

Guzzetti et al. 2016, arXiv: 1605.01615



The first 3 minutes of the 
Universe

Resolution of current instrumentation :
1/1000 of the size of a proton.
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The first 3 minutes of the 
Universe

t=0s : the Big-Bang 
t=10-36 to t=10-32s : inflation

- emission of gravitational waves 
- emission of density waves

Guzzetti et al. 2016, arXiv: 1605.01615

- Universe mainly composed of quarks, leptons and photons
t=10-6s : formation of protons and neutrons
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The first 3 minutes of the 
Universe

t=0s : the Big-Bang 
t=10-36 to t=10-32s : inflation

- emission of gravitational waves 
- emission of density waves

Guzzetti et al. 2016, arXiv: 1605.01615

- Universe mainly composed of quarks, leptons and photons
t=10-6s : formation of protons and neutrons, and then 
formation of nuclei of deuterium, helium and lithium
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The first 3 minutes of the 
Universe

t=0s : the Big-Bang 
t=10-36 to t=10-32s : inflation

- emission of gravitational waves 
- emission of density waves

Guzzetti et al. 2016, arXiv: 1605.01615

- Universe mainly composed of quarks, leptons and photons
t=10-6s : formation of protons and neutrons, and then 
formation of nuclei of deuterium, helium and lithium.

t=3mn : the Universe is mainly composed of radiation, baryonic 
matter, dark matter and dark energy. 

- Electrons and nuclei are not bounded yet. 



The formation of the first stars 
and galaxies

• Over-dense regions grow from the initial 
perturbation

• As the Universe is expanding, the Universe’s 
temperature is decreasing. 

• The Universe’s density is also decreasing as 
the Universe is expanding



The formation of the first stars 
and galaxies

Time

• Free electrons and protons start to be
bounded but as soon as they are hit by a
photon they become again unbounded :

! + # ⇔ % + &

• When the Universe’s density is sufficiently
low to avoid interaction between photons
and particles (matter and radiation are
decoupled) :
• The first atoms are formed (Hydrogen,

Helium, Lithium)
• Photons can escape, and form the first

emitted radiation in the Universe : the
Cosmic Microwave Background

This epoch is called the recombination phase



The formation of the first stars 
and galaxies

• The temperature of the Universe at the
recombination epoch was ~3000K

• The redshift of the recombination
epoch is (~1100

• Therefore, the observed
temperature of the CMB is today :

+ ≈
!"""
#$%

=
!"""
##"#

≈ 2.7 1

• The CMB is observed at a frequency of 
160.23 GHz



The formation of the first stars 
and galaxies

• European Space Agency (ESA) satellite

• Launched by an Ariane 5 rocket in May 2009

• Diameter :1.5m

• Objectives :
• Map the Cosmic Microwave Background
• Measure the cosmological parameters
• Study galaxy clusters



The formation of the first stars 
and galaxies

• After the recombination phase, the Universe
enters the Dark Ages

• Overdense regions continue to grow

• Their density becomes sufficiently large that
their gravitational field is dominated by their
own mass

• Their evolution is now driven by their own
gravity (self-gravitating objects) and not the
evolution of the Universe (Hubble flow)

• At the center of these overdense regions, the
gas cools and leads to the formation of the
first stars : this epoch is called Cosmic Dawn



The formation of the first stars 
and galaxies

• The first stars are surrounded by neutral
hydrogen

• The first stars emit UV photons* which will
ionise the neutral hydrogen, creating
bubbles of ionised hydrogen : this is the
epoch of reionisation

* This will be discussed later in this course



The formation of the first stars 
and galaxies

• The first stars are surrounded by neutral hydrogen

• The first stars emit UV photons* which will ionise the
neutral hydrogen, creating bubbles of ionised
hydrogen : this is the epoch of reionisation

• CMB observations by Planck reveals that the
hydrogen is fully ionised 1 billion years after the Big-
Bang (z=6)

• The study of the first generation of galaxies shows
that they grow hierarchically by merging, leading to
an evolving distribution of galaxies of different
masses.

* This will be discussed later in this course Robertson et al. (2015), ApJ, 802, 19



Rosdahl et al. 2018



The “hunt” for the most distant galaxies 
between 1950s and 2022

Humason et al. 1956
Minkowski 1960

Spinrad et al. 1975
Spinrad & Smith 1976

Smith et al. 1979 
Spinrad 1982 

Spinrad & Djorgovsky 1984
Lilly 1988

Chambers et al. 1990
Lacy et al. 1994

Petitjean et al. 1996
Franz et al. 1997

Day et al. 1998
Hu et al. 1999, 2002

Pelló et al. 2004
Iye et al. 2006

Fontana et al. 2010
Vanzella et al. 2011

Ono et al. 2012
Shibuya et al. 2012

Finkelstein et al. 2013
Oesch et al 2014
Zitrin et al. 2015

Oesch et al. 2016
Harikane et al. 2022

z=0.2

z=3.39

z=7.51

z=13.27
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The arrival of the James Webb
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The arrival of the James Webb
Space Telescope



The arrival of the James Webb
Space Telescope

GLASS-z13 (Naidu et al. 2022)
CEERS-DSFG-1 (Finkelstein et al. 2022)

SMACS-z16a (Atek et al. 2022)

z=13
z=16

z=17

Within a week, 11 papers have been
submitted using the first dataset from the
JWST to search for the first galaxies.



Summary of the formation of 
structures in the Universe

Gas clouds with multi-phases

dense regions  Low-density regions  
fast cooling

collapse

Gas clouds Gas clouds Gas clouds

Heating of 
collapsing gas

Protostar Protostar Protostar The first part of this course will be to describe the
processes responsible for the cooling of the gas, the
heating of the gas and the formation of protostars.



Toolbox for this course

Euler’s equation
Adiabatic and inviscid flow

2
35⃗
36
+ 2(5 8 ∇)5⃗ = −∇< − 2∇Φ&

Poisson’s equation
Differential equation 

For the gravitational potential we can write : 

∆Φ = ∇' Φ = ?

∇'Φ& = 4AB2(C)
Equation of continuity 

Conservation of some quantities

32
36
+ ∇ 8 D⃗ = 0

Equation of state for an ideal gas

< =
2E(+
F

Flow velocity Gravitational potential

pressure

Flux=!#⃗

Density (mass/unit volume)

Mass particle



Physical processes in 
baryonic gas 
Chapter 2



Some definitions

The amount of energy (3G) passing through a surface
should be proportional to the size of the surface (3H)
and to the duration of the exposition (36).

It is usually defined as :
3G = 3I×3H×36

The energy flux 3I is measured in erg s-1 cm-2

A source of radiation is isotropic if it emits energy 
equally in all directions

By conservation of Energy, 3G C# = 3G C' then :
I C# 4AC#

' = I C' 4AC'
'

r1

r2

I C =
I C# C#

'

C'



3H

3Ω

Some definitions
Considering a surface normal to the direction of a
given ray, and considering all the rays whose
direction is within a solid angle 3Ω, then the energy
passing through the element 3H is :

3G = L) 3H 36 3M 3Ω
where L) is the specific intensity (or brightness)

If the surface is not perpendicular to the rays but has
different orientation, then

3G = L) 3H 36 3M cos Q 3Ω
= 3I) 3H 36 3M

N.B. : If the radiation is isotropic, then ∫3I) = 0



Some definitions
The specific energy density is the energy per unit
volume per unit frequency range :

3G = S) Ω 3T 3Ω 3M

If we consider this cylinder, then 3T = 3H U 3+ then
3G = S) Ω 3H U 36 3Ω 3M

but within 36 all radiation will pass out of the
cylinder, then :

3G = L)3H 3Ω 36 3M

The specific energy density is defined as :

S) Ω =
L)
U

dA

U 36

The mean density is defined as :

V) =
1
4A

W L)3Ω

Integrating the specific energy density over solid
angles :

S) = WS) Ω 3Ω =
1
U
W L)3Ω

or S) =
*+
,
V)

The total radiation density is given by

S = WS)3M =
4A
U
W V)3M



Radiative transfer
We use radiative transfer each time a
radiation is passing through a matter and add
(absorption) or subtract (emission) energy.

The spontaneous emission coefficient is defined as 
the energy emitted per unit time per unit solid 
angle per unit volume, such as : 

!" = $ !% !Ω !'

If the emission is monochromatic (e.g., an emission 
line), we can define a monochromatic emission 
coefficient : 

!" = $!!% !Ω !' !(

If the emission is isotropic, then :

$! =
1
4+

,!

where ,! is the radiated power 

I- EMISSION
We can also define the emissivity as the energy 
emitted per unit frequency per unit time per unit 
mass, and rewrite the transmitted energy in an 
isotropic emission as : 

!" = -!. !% !' !(
!Ω
4+

For an isotropic emission, the relation between the 
emission coefficient and the emissivity is given by : 

$! =
-!.
4 +

Considering a beam of cross-section !/ traveling 
through a volume !% = !0 × !/ , then the energy 
added by spontaneous emission is : 

!2! = $! !0

(Remember that !" = $! !% !& !' !Ω)



Radiative transfer
We use radiative transfer each time a
radiation is passing through a matter and add
(absorption) or subtract (emission) energy.

The absorption coefficient is defined as the loss of 
intensity in a beam as it travels a distance !0 : 

!2! = −4! 2! !0

The absorption depends on the density of absorbers 
along the travel of a beam. 
If we assume a random distribution of absorbers, 
each of them with a cross section 5! and a density 
per unit volume 6, then the effect of these 
absorbers on a radiation passing through !/ within 
a solid angle !Ω is : 

!" = −!2! !/ !' !Ω !(
or : !" = 2! 6 !/ !0 5! !Ω !' !(

Therefore : 
!2! = −6 5! 2! !0

II- ABSORPTION

We can rewrite the absorption coefficient such as : 
4! = 6 5!

Usually, 4!is defined with the opacity (also known 
as the mass absorption coefficient) such as :

4! = . 7!



Summary of Monday’s lecture
XY = Z-X[ X\ X] X^

XY = _-X` Xa X\ X]

XY = −b c- X[ Xd Z- Xa X\ X]



Summary of Monday’s lecture

The energy passing through a surface element
3H over a time 36 is given by

XY = Xe×X[×X\ = Z-X[ X\ X] X^

We defined the specific energy density by :
XY = f- ^ X` X] X^

S) =
L)
U 3T = U 36 3H

We also defined the mean density by :

g- =
h
ij

∫ Z-X^

Specific intensity

The total radiation density is :

f = ∫ f-X] =
ij
k
∫ g-X]

DEFINITIONS RADIATIVE TRANSFER

3H

When a beam of light is passing through a surface 3H light can
be added to the beam (emission by the material) or subtracted
(absorption by the material)

Emission of light (adding energy to the beam) : 
3G = l)3T 3Ω 36 3M

Absorption of light (subtracting energy to the beam) :
3G = −m n) 3H 3o L) 3Ω 36 3M

Spontaneous emission coefficient

!! Absorption 
coefficient

“-” absorption subtracts 
energy to the beam



z=12.110 ± 0.001



Radiative transfer
We use radiative transfer each time a
radiation is passing through a matter and add
(absorption) or subtract (emission) energy.

The radiative transfer equation shows how the intensity of a beam 
evolves and includes contribution of spontaneous emission and 
absorption.  

We showed that :

- Emission : !2! = $! !0

- Absorption : !2! = −6 5! 2! !0

Therefore : 
89"
8:

= −;"9" + ="

III- RADIATIVE TRANSFER EQUATION Exact solutions of the radiative transfer equation : 

• Emission only : #$"
#%
= $!

è 2! 0 = 2! 0& + ∫%#
% $! 0' !0′

• Absorption only : #$"
#%
= −4!2!

è2! 0 = 2! 0& exp[−∫%#
% 4! 0' !0′]

Outside of these simple cases, the resolution of the 
radiative transfer equation requires numerical analysis



Radiative transfer

The optical depth is a measure of the transparency of a medium, 
and is defined as :  

!E! = 4!!0

or by integrating : 

E! 0 = F
%#

%

4! 0' !0′

III- OPTICAL DEPTH AND SOURCE FUNCTION

By definition, a medium is said optically thin (or transparent) if a 
photon can traverse it without being absorbed.

• Optically thin : E! ≤ 1

• Optically thick : E! ≥ 1
Filters used to observe the Sun are good examples 
of optically thick medium

Absorption 
coefficient



Radiative transfer

The radiative transfer equation can now be rewritten to include 
the optical depth : 

!2!
!E!

= −2! + I!

where I! is the source function defined as : I! =
("
)"

IV- OPTICAL DEPTH AND SOURCE FUNCTION

We can demonstrate that the formal solution of this equation can 
be written as : 

2! E! = I! + J*+"(2! 0 − I!)

3L)
3o

= l) − p)L)

3q) = p)3r



Radiative transfer

The mean distance a photon can travel through an absorbing 
material without being absorbed is the mean free path. 

If we consider the photon mean free path as it tries to escape from 
an emitting region, and assuming E! = 1, we have : 

E! = 4!0 = 1

then : 

0 =
1
4!

=
1
6 5!

= N!

V- MEAN FREE PATH

A photon escaping from a region with an optical depth E! will 
undergo a random walk with N scatterings : 

O = PN! ⇒ P~
O,

N!,
~ 4!O , = E!,



Thermal Radiation
Thermal Radiation is radiation emitted by matter in
thermal equilibrium. The best example is the black body
radiation.

The specific intensity depends only on the temperature of
the radiation, such as :

L) = s)(+)

where s) + is the Planck function, defined as :

s) + =
2ℎM!/U'

exp
ℎM
E(+

− 1

In the case of thermal radiation, the source function is
defined by :

o) = s) +

then l) = p)s)(+)

The radiative transfer equation can now be rewritten as :
3L)
3r

= −p)L) + p)s)(+)

or ./$
.0$

= −L) + s)(+)

DEFINITIONS

• Blackbody radiation : L) = s) +

• Thermal emission : o) = s) +

Kirchoff’s law

In thermal equilibrium
3L)
3q)

= −L) + s) + = 0

Hence
L) = s) ≡ o)



Thermal Radiation
Example of Blackbody radiation :

• Cosmic Microwave Background

• Sun

• Lava

The Wien’s displacement law gives the
wavelength of the peak :

z =
{
+

where { is the Wien’s displacement constant
({ = 2.898×101! ~ 11#)



Thermal Radiation

Rigel 
+2345 ∼ 11 0001

Sun 
+2345 ∼ 6 0001

Betelgeuse 
+2345 ∼ 3 0001



Thermal Radiation

Blackbody
enclosure

Considering a blackbody enclosure with a piston,
so that work can be done or subtracted to the
enclosure (the radiation).

The first law of thermodynamics gives :
3Ç = 3É − < 3T

where P is the pressure, É the heat and Ç is the total
energy.

According to the second law of thermodynamics, we have :

3o =
3É
+

where o is the entropy.

In thermodynamics :
• S = T % (with T the energy density)
• , = -

.

From radiative transfer : S = ∫S) 3M =
*+
, ∫ l)3M

Radiation 
pressure



Thermal Radiation
We can rewrite the first law of thermodynamics such as :

3Ç = + 3o − < 3T

Then 3o = 6
7
.3
.7
3+ + *3

!7
3T

Since 3o is a perfect differential, we can write :

• 89
87 6

=
6
7
.3
.7

• 89
86 7

=
*3
!7

And then :
Ö'o
Ö+ÖT

=
1
+
3S
3+

= −
4S
3+'

+
4
3+

3S
3+

3S
3+

=
4S
+

⟺
3S
S
= 4

3+
+

integrating gives :
log S = 4 log + + log â

and therefore :
S = â+*

For isotropic emission : L) = V) , and in the case of a
blackbody radiation L) = s) + , therefore :

S = WS) 3M =
4A
U
W l)3M =

4A
U
Ws)(+)3M =

4A
U
s(+)

with s + = ∫s) + 3M =
:,
*+
+* [tabulated !]

Stefan-Boltzmann law
/! =

1
43

4 5!6Ω

8 = 9 :



Line emission

E1, g1

G', B2 = G# + ℎM"

ℎM"

l) = p)s)(+) Kirchoff’s law

emission absorption

Statistical weight gi: the total number of states 
possible with a given set of quantum numbers

E1, g1

G', B2

Spontaneous emission

E1, g1

G', B2

Absorption Stimulated emission

H'#: transition probability per unit time for spontaneous emission

s#'ãV : transition probability per unit time for absorption

EINSTEIN COEFFICIENTS

E1, g1

G', B2

s'#ãV : transition probability per unit time for stimulated emission

̅V = ∫"
;
V)Φ)3M with ∫"

;
Φ)3M = 1The energy difference between two levels is not 

infinitely sharp, therefore photons with " =
ℎ(& + ∆" with ∆" ≪ ℎ(& could also be 
absorbed/emitted.

/! =
1
43

∫ 5!6Ω

Mean density



Line emission
In thermodynamics equilibrium : 

â{rçC#6éçm = !~érréçm
m#s#' ̅V = m'H'# + m's'# ̅V

where m# and m' are the number density of atoms of 
level 1 and 2 respectively

Solving for ̅V gives : 
̅V =

H'#/s'#
m#
m'

s#'
s'#

− 1

In thermodynamics equilibrium : 

!=
!,
=

#= exp(−
)
*>+

)

#, exp(−
) + ℎ/&
*>+

)
=
#=
#,
exp(

ℎ/&
*>+

)

Therefore : 
̅# = %"#/'"#

(#'#"
("'"# exp ℎ-$

.%/ − 1

In thermodynamics equilibrium : V) = s) ,and s) is 
varying slowly with 3M then ̅V = s) : 

%"#/'"#
(#'#"
("'"# exp ℎ-

.%/ − 1
= 2ℎ-&/3"

exp ℎ-
.%/ − 1

which gives, the following relations between Einstein 
coefficients : 

B#s#' = B's'# H'# =
2ℎM!

U'
s'#

E1, g1

G', B2 = G# + ℎM"

ℎM"



Summary of Friday’s lecture
RADIATIVE TRANSFER

The radiative transfer equation can be written as : 
3L)
3q)

= −L) + o)

3q) = p)3r
o) =

l)
p)

Optically thin : )! ≤ 1
Optically thick : )! ≥ 1

We defined the mean free path as 

r =
1
p)

=
1
m n)

= è)

In thermal radiation, the specific intensity only depends 
on temperature and is given by the Planck function :

s) + =
2ℎM!/U'

exp
ℎM
E(+

− 1

THERMAL RADIATION

LINE EMISSION

We defined 3 Einstein’s coefficient : 
- For spontaneous emission H'#
- For absorption s#' ̅V
- For stimulated emission s'# ̅V



Question : Why the RTE uses !4 and we computed "!4 ? 

Summary of Friday’s lecture

!" = $]!% !& !' !( 56' = 7' 58

56' = − 9' 6' 58

XZ-
Xê

= −ë-Z- + _-



Line emission
The line profile function describing an emission 
should be identical at the one describing absorption : 

W
"

;
í)<=3M = W

"

;
í):>23M

We remind that the amount of energy emitted is 
given by : 

3G = l)3T 3Ω dM 36

Each atom contributes to an energy ℎM" distributed 
over 4A solid angle, which can be expressed as :

3G =
ℎM"
4A

Φ M m'H'# 3T 3Ω 3M 36

We easily get the emission coefficient : 

l) =
ℎM"
4A

m'H'#í(M)

The total energy absorbed in dt and dV is given by :
ℎM"
4A

m#s#'3T 36 W3ΩW
"

;
V)Φ M 3M

Then, the energy absorbed out of a beam is :

3G =
ℎM"
4A

m#s#'3T 36 3Ω V)Φ M 3M

Remember that : 3G = L) −p) 3H 3r 3Ω 36 3M

We easily get the absorption coefficient : 

p) =
ℎM
4A

m#s#'í Ms#'ãV with ̅V = ∫"
;
V)Φ)3M



Line emission
Stimulated emission is proportional to the 
intensity, and only affects photons along 
the given beam, similar to absorption. 

Then we can consider stimulated emission 
as negative absorption, such as :

p)2?@= = −
ℎM
4A

m's'#í M

Then the absorption coefficient, corrected 
for stimulated effect is : 

p) =
ℎM
4A

í M (m#s#' − m's'#)



Line emission
Collision between particles is also an important 
process producing emission lines. 

Excitation/de-excitation of an atom can be 
expressed as : m"î'# ; m"î#' where m" is the 
density of colliding particles. 

Usually collisions are dominated by electron-ions 
collisions, then m"~m<

If the gas is in thermodynamic equilibrium :

m<î'#B' exp
G'
E(+

= m<î#'B# exp
G#
E(+

then :
î#' =

B'
B#
î'#exp(−[G# − G']/E>+)

Excitation by collisions is one of the main process in 
astrophysical gas cooling (energy is dissipated by 
radiation).  

In a thermodynamic equilibrium : 
m# m"î#' + s#' ̅V = m' m"î'# + s'# ̅V + H'#

If we assume that induced processes (absorptions) 
are much less important than spontaneous and 
collisions, then : 

m#m"î#' = m'(H'# + m"î'#)

or 
m'
m#
=
m"î#'
H'#

1

1 +
m"î'#
H'#

de-excitation excitation



Line emission
The line emissivity corresponds to the amount of 
energy emitted by the total number of atoms : 
ò = m'H'#ℎM'# = m"m#î#'ℎM'#

1

1 +
m"î'#
H'#

- At low density : m"î'# ≪ H'#
ò ≈ m"m#î#'ℎM'#

Every 1-> 2 transitions rise to a downwards 2-> 1 
radiative transition

- At high density : m"î'# ≫ H'#
ò ≈ m#

B'
B#
exp(−

ℎM'#
E(+

) H'#ℎM'#

The emissivity depends on the conditions of the 
exited level; many downwards transitions are caused 
by collisions.

The critical density above which the line is 
predominantly collisionaly de-excited is :

!&?~1,=/3,=

Generally :

m"~m< ∝ m:?A=2 ∝ m

Therefore : 
• At 6 ≪ 6&? ∶ -! ∝ 6,

• At 6 ≫ 6&? ∶ -! ∝ 6

@"
@#
=
@$A#"
B"#

1

1 +
@$A"#
B"#

-$% =
.%
.$
-%$exp(−["$ − "%]/7&8)



Line emission
Definition: In Astrophysics some process timescales are so 
long that they can not be reproduced in laboratory. Some 
emission lines, with an extremely small probability may be 
detected in Space and not in laboratory : forbidden lines

Type of atoms Timescale Nature of line Example

Dipole short permitted %p z6563

Quadrupole long forbidden ùLLL z5007

Intercombination intermediate Semi-forbidden îLLL]z1909

Da Cunha et al. 2008

M82
d=12 million light-years

%p

Stark et al. 2017EGS-zs8-1
z=7.733



Line emission
THE HYDROGEN ATOM

The electronic energy states are determined by :
1

5DE?F→H = 6
1
!, −

1
7,

with 6 the Rydberg constant (6 = 1.09×10I7*=)

Young stars are UV emitters and emit radiation at
wavelength shorter than the Lyman edge (5 =
91.1753 !7)è the hydrogen around young stars is
ionized.

In the ionised gas, electrons recombine in ?Jfrom
upper levels, and then decay to the fundamental by
multiple transitions (and therefore multiple line
emissions)

The recombination rate is given by :
@K→( = AK→( + !L!M

where AK→((+) is the effective recombination
coefficient

The emissivity of a recombination line is given by :
BK→( = ℎ/K→(AK→(!L!M



Line emission
CASE OF BROAD LINE REGIONS

A broad line region is a very compact region (<1kpc) 
surrounding an accreting supermassive black holes.

In this region, clouds are photo-ionised by strong UV 
radiations emitted by the accreting black holes. 

The mean density of these clouds is ~10==C7*=

Remember that at n ≪ !&? ∶ B! ∝ !,

Consequently, the permitted and recombination lines are 
much brighter than forbidden lines but also much brighter 
than any other lines coming from the host galaxy.

Centauru
s A



Heating and Cooling
As we will see later in this course, processes of 
cooling and heating astrophysics gas are of central 
importance in the topic of structures formation. 

The net heating rate (É) is given by :
É m, + = Τ m, + − Λ(m, +)

Total heating rate Total cooling rate

The equilibrium temperature is the temperature at 
which cooling rate equal heating rate. 

To test the stability of this equilibrium, we can slightly 
change the temperature from equilibrium temperature : 

∆+ = + − +B

Then the enthalpy of the gas is : 
3∆%
36

= É + ≈ É|7% + ∆+
ÖÉ
Ö+ N|P%

But É|7% = 0 (by definition), then :
3∆%
36

≈ ∆+
ÖÉ
Ö+ N|P%

The cooling time is defined as : 

q, =
Ç
Λ

where U is the thermal energy of the gas



Heating and Cooling
The cooling function Λ(m, +) provides a description 
of the way the gas will cool considering all cooling 
processes, and is then defined as : 

Λ + = †
@

Λ@

The main cooling processes are : 

• Cooling by lines emission
• Cooling by free-free emission in ionized gas 

• Cooling by dust 
• Cooling by recombination 

Net cooling rate



Heating and Cooling
COOLING BY LINE EMISSION

Remember that at high-density : 

ò ≈ m#
B'
B#
exp(−

ℎM'#
E(+

) H'#ℎM'#

and at low-density :
ò ≈ m"m#î#'ℎM'#

We also demonstrated that (relation between 
upwards and downwards transition): 

î#' =
B'
B#
î'#exp(−[G# − G']/E(+)

To be an effective cooling process (i.e, to get  a high 
value of î#') ∶ ΔG ~E(+

For hydrogen, typical ΔG < 10 !T, which means a 
temperature of T ~ 10*1

Net cooling rate

Cooling by Hydrogen 
emission lines



Heating and Cooling
COOLING BY LINE EMISSION

At lower temperature, several other atoms can be 
used to cool the gas : 

• C+ (2P1/2 à 2P3/2) : DB
E
=92 K

• Si+ (2P1/2 à 2P3/2) : DB
E
= 413 K

• O (3P2 à 2P1) : DB
E
= 228 K

• O (3P2 à 3P0) : DB
E
= 326 K

Focussing on C+, collisional excitation can occur via 
collisions with electrons or hydrogen atoms. For 
collisions with electron, the cooling rate is given by :

ΛF$ = m<m,$8×101!!+1#/' exp(−
92
+
) V~1!r1#

Net cooling rate

Cooling by Hydrogen 
emission lines



Heating and Cooling
COOLING BY FREE-FREE EMISSION

In hot (T>>105K) fully ionised gas, radiation is 
produced via Bremsstrahlung

The Bremsstrahlung emissivity is given by :

ò)
55 =

F"•'!H

3A'Uò"
'~' (

A~
6E(

)
#
'B55m<m@+

1#'!1I)/E&7

ò)
55 = â#B55m<m@•'+1#/'!1I)/E&7

where B55 is the Gaunt factor and is tabulated. 

Bremsstrahlung radiation is produced when a 
charged particle is decelerated when deflected by 
another charged particle. The moving particle loses 
kinetic energy, which is converted into radiation. 



Heating and Cooling
COOLING BY FREE-FREE EMISSION

We can determine the absorption coefficient linked to 
the emission coefficient for free-free emission. We 
remember that : 

l) =
ò)
4A

l) = p)s)(+)

And s) + =
'I)'/,(

JKL )$
*&+

1#

Then p)
55 =

M$
,,

*+($ 7

or 

p)
55 =

F"•'!HU

24A!ò"
'~'ℎ

(
A~

3E(
)
#
'B55m<m@M!+

1#'(1 − !
1 I)
E&7)

In the Rayleigh-Jeans limit (low energy) : ℎM ≪ E>+, 
therefore : 

1 − !
1 I)
E&7 ≈

ℎM
E(+

Then the absorption coefficient can be simplified as :
p)
55 = â'B55m<m@•'M1'+1!/'

:!
'' =

;(<%=)

3?%@:(
%A% (

?A
67*

)
$
%.''C+C,8

-$%=-.!/0!1



Heating and Cooling
COOLING BY FREE-FREE EMISSION

Considering a cloud of fully ionised hydrogen at a 
temperature T, and assuming that we are in a Rayleigh-
Jeans limit (i.e. ℎM ≪ E(+). 
The coefficient absorption is given by : 

p)
55 = â'B55m<m@M1'+1!/'

Remember that the optical depth is given by :
q) = p)r

Then if L is the distance through the region, then : 
q)
55 = â'B55m<m@M1'+1!/'¶

And in the case of an hydrogen cloud, then ni=ne :
q)
55 = â'B55m<'M1'+1!/'¶

Numerical calculations show that : 
B55 ∝ +".#OM1".#

We have demonstrated earlier than :
L) = s) + 1 − !10$

Which could be simplify in the two limits :
• Optically thin : q) ≪ 1 L) = q)s)

• Optically thick : q) ≫ 1 L) = s)

Therefore : 
• Optically thin : q) ≪ 1 L) ∝ M1".#

• Optically thick : q) ≫ 1 L) ∝ M'

Example of Hydrogen atom



Heating and Cooling
COOLING BY FREE-FREE EMISSION

Example of Hydrogen atom

The cooling rate is found by integrating the quantity : 

Λ55 = W
)-

)./0
ò55
) 3M

Therefore :
Λ55 ∝ m<m@•'+<

1#/'

Given that .P
.7
> 0, if the heating is constant, this 

results into a stable cooling process. 

Optically thin : q) ≪ 1 L) ∝ M1".#

Optically thick : q) ≫ 1 L) ∝ M'



Summary of Monday’s lecture
EMISSION LINES IN THE CASE OF A BROAD LINE REGIONS



Summary of Monday’s lecture
EMISSION LINES IN THE CASE OF A BROAD LINE REGIONS

Ramos-Almeda et al. (2019)



Summary of Monday’s lecture

We defined the cooling function Λ(m, +) as : 

Λ + = †
@

Λ@

where Λ@ is the cooling function for individual process

COOLING AND HEATING

By line 
emission

Hydrogen is efficient 
only at + > 10*1, at 
lower temperature C 
and O are more 
efficient. 

By fre
e-fre

e 

emissi
on

For hot and fully ionised H-
gas (> 10O 1), if the 

heating is constant, the 
cooling is a stable process. 



Heating and Cooling
COOLING OF MOLECULAR GAS

In the cool molecular phase of the ISM, the
excitation conditions for rotational transitions of
molecules are matched to the typical temperature of
molecular clouds.

From your Quantum mechanics course, you know
that :

GQ
4A? = V V + 1

ℏ'

2L
= V V + 1 s

The Einstein A coefficient for a rotational transition
can be written as :

HR= =
8A'

3 ℏU'
•"M! < m ©3|~ >'

The molecule must have a permanent dipole (to
justify the rotational transition) ©3 = F , then for
J+1àJ transition, we can quote the result of QM :

HS$#,Q =
8A'

3ℏU'
•"M!F'

V + 1
2V + 1

The energy spacing between the level is :
ℎMS$#,S = 2s(V + 1)

H2 is the most abundant molecule in the Universe,
but it has no permanent dipole, hence it cannot have
transition ΔV = ±1, it can only undergo quadrupole
transition ΔV = ±2, which corresponds to excitation
temperature T>500K (z → mid-IR)



Heating and Cooling
COOLING OF MOLECULAR GAS

However, molecules with dipole transitions exist in
the Universe :

Molecules Transition Frequency
12CO V = 1 → 0 115.27 GHz
12CO V = 2 → 1 230.54 GHz
CS V = 1 → 0 48.99 GHz
NCN V = 1 → 0 86.63 GHz

All these transitions are excellent coolant of the cold
molecular phase of the ISM

Riechers et al. 2020



Heating and Cooling
COOLING BY DUST

Dust is an important component of the ISM. It
accounts for

- 50% of the heavy elements
- 1% of the baryonic mass of a galaxy
- 40% of the luminosity of a galaxy

Dust grains are produced by stars at the end of their
life (e.g., after SNe). Their size is ranging from 1nm to
1F~ with a mean size of about 0.1 F~. This explains
why dust grain absorb mainly at optical wavelength.

The smallest dust grains are just large molecules
such as PAHs, the larger are amorphous grain of
silicates and carbon, but with an icy surface layer



Heating and Cooling
COOLING BY DUST

The main consequences of dust in the ISM are :
- Absorption at optical wavelength (extinction)

- Radiates thermally in the mid- and far-infrared
- Acts as catalysts for chemical reaction in the ISM and the formation

of large molecule

- Can also scatter photons elastically

Consider a dust grain of radius â and assume that dust scattering does
not contribute to dust heating, then only absorption is considered. The
absorption coefficient of a spherical grain is then given by :

p<U? M = m&n<U? M, â = m&É<U? M, â n: = m&É<U? M, â Aâ'

where É<U? M, â is the efficiency of extinction

The extinction coefficient can be expressed as :
É<U? = É:>2 + É2,:

The power absorbed by a single grain from an
incident radiation field I) is given by :

<:>2 = W
"

$;
I)n:É:>2 M, â 3M

At equilibrium, the emissivity is given by :
ò = 4Al) = 4Ap)s)(+&)

Hence, for a single grain the power radiated is :

<4:. = 4AW
"

$;
n:É:>2 M, â s) +& 3M

And in equilibrium : <:>2 = <4:.



Heating and Cooling
COOLING BY DUST

For typical dust : +&
<V ∝ IW6

#/O

Since I = X
*+Y(

, then :
+&
<V 1 ≈ 40¶!Z

#/O≠[,
1'/O

Typically, dust heated by UV emission
reaches temperature of 100K in star-
forming regions.

If there is a significant amount of dust,
then the ISM is optically thick and leads in
efficient cooling.



Heating and Cooling
RADIATIVE HEATING AND COOLING BY RECOMBINATION

Photons with energies greater than the ionisation potential
of a species lead to the ejection of an electron with energy
ℎM − L@
This electron can then heat the gas via collision processes.
Some of the electron kinetic energy will lead to excitation of
electronic levels, and subsequently re-radiation and hence no
heating of the gas.

Considering a cloud of pure hydrogen.
The ionisation rate is given by :

m\o∗n@

Ionising photons flux
Ionisation cross-section

In equilibrium, ionisation rate must equal the
recombination rate :

m\o∗n@ = m<'p(
where p( is the net recombination coefficient and m< = m@
The heating rate is given approximately by :

Τ = m\o∗n@(ℎM̅ − L\)

where L\ is the ionisation energy of hydrogen and
ℎM̅ − L\is the mean energy of ejected electrons.

The mean kinetic energy per electron is !
'
E(+B, and is lost

on recombination, hence the cooling rate is :

Λ = m<'p(
3
2
E(+B



Heating and Cooling
RADIATIVE HEATING AND COOLING BY RECOMBINATION

Equating heating and cooling rate gives :

m\o∗n@ ℎM̅ − L\ = m<'p(
3
2
E(+<

therefore :

+< =
2
3
ℎM̅ − L\
E(

If the ionising flux is coming from a central star, then the
emission can be approximated by a thermal emitter of
temperature +∗ , and a reasonable approximation is that
ℎM̅ − L\~E(+∗.
Then :

+<~
2
3
+∗

Typically +∗~3×10* − 6×10*1 giving +<~4×10* − 8×10*K

- In a ionised gas : heat via collisions
- In a neutral gas : heat via inelastic collisions (hydrogen

emission lines escaping the cloud and not contributing to
the heating of the gas)

Similar arguments can also apply to the heating by X-Rays
and Cosmic Rays which ionise principally hydrogen, and the
emission of photo-electrons from dust particles.

MECHANICAL HEATING 

Main processes :
Heating in shocks

Heating in viscous accretion discs
In a strong shock all of the kinetic energy is converted into
internal energy.



Summary of cooling processes

We defined the cooling function Λ(m, +) as : 

Λ + = †
@

Λ@

where Λ@ is the cooling function for individual process

COOLING AND HEATING

By line 
emission

Hydrogen is efficient 
only at + > 10*1, at 
lower temperature C 
and O are more 
efficient. 

By fre
e-fre

e 

emissi
on

For hot and fully ionised H-
gas (> 10O 1), if the 

heating is constant, the 
cooling is a stable process. 

M
ol

ec
ul

ar
 

ga
s

Cooling of molecular gas is due to rotational 
transitions, which are more efficient for molecules 
with a permanent dipole. Then H2 is not the main 

responsible for molecular gas cooling. Other 
molecules  with permanent dipole (e.g., CO)

Dust grains absorb UV light and 
re-radiate in FIR. If the dust 

content is high, then cooling by 
dust is very efficient

By dust

By 
recombination

In ionised gas, the 
energy of free 
electrons will heat 
the gas by collisions. 
In a neutral gas, we 
have inelastic 
collisions leading to 
photons emission 
(and no heating)



The multi-phase ISM

- 3 stable points in pressure (.7
.R
= 0), but only 2

“real” stable points
Then we conclude that clouds of hydrogen are
composed of warm and cold phases (multi-phase
medium).



The multi-phase ISM

Properties of Giant Molecular Clouds :

- Typical masses : Æ~10OÆ⨀

- Radius : ≠~50pc

- Gravitational Energy E_~
`a(

4

- Thermal Energy GE~
!
'

a
=1

E(+

Therefore :
G&
GE
~
∞Æ~\

CE(+
≈ 100

è The gravitational potential energy is much higher than
the thermal energy meaning that such clouds are self-
gravitating.

CAN WE EXPLAIN MOLECULAR CLOUDS IN THIS WAY ? For the hot ionised phase, it is useful to calculate the
cooling time :

q, =
GE
Λ

Cooling at ~5×10OK is dominated by line emission from
collisionnaly-excited ions and :

Λ ≈ 1.6×101!Om<m@
7
#"2

1".H
W m-3

Then the cooling time for the gas with m<~3×10!m-3 :

q, =
'
(R3E&7

P
~4×10H

7
O×#"4

#.H R3
!×#"'

1#
yr

The gas does not need a constant heating source, but still 
cools quickly on timescale (1 million years) much shorter 
than those over which a galaxy evolves (~billion years). 

The gas can cool rapidly especially in denser regions, and 
then condense to one of the denser phases.



The multi-phase ISM

Phase ntot (106 m-3) T(K) M/109 Mo f

Molecular >300 10 4.0 0.01

Cold neutral 50 80 3.0 0.04

Warm neutral 0.5 ~5000 2.0 0.3

Warm ionised 0.3 10 000 ~0.2 0.15

Hot ionised 3x103 3x105 <0.02 0.5



Gravitational stability 
and instability
Chapter 3



Equations of hydrodynamics 
and hydrostatic equilibrium

Euler’s equation governs adiabatic and inviscid flow :

2
35⃗
36
+ 2(5 8 ∇)5⃗ = −∇< − 2∇Φ&

Density of 

the fluid

Flow 

velocity

Pressure Gravitational 

Potential

In equilibrium 5 = 0 , then : 
−∇< − 2∇Φ& = 0

Poisson’s equation gives the gravitational potential :

∇'Φ& = 4A∞2

The equation of state for an ideal gas gives the 
pressure :

< =
2E(+
F

TOOLBOX FOR THIS CHAPTER

The equation of continuity

32
36
+ ∇. 25 = 0

We also need an equation describing the energy flux 
but if we use the general form, we will not be able 
to solve the equations analytically. Approximations 
are needed !



The isothermal sphere
The simplest model in which pressure and gravity 
allow stable configuration is the isothermal sphere.

In this model, we assume : 
- a spherical symmetry 
- a gas at a uniform temperature T
- the equation of state given by : < = 2

E&7
c
= â7

'2

where â7' is the isothermal sound speed. 

In spherical coordinates (C, Q, φ), the gradient is 
given by : 

∇? =
Ö?
3C
C⃗ +

1
C
Ö?
3Q

Q⃗ +
1

C sin Q
Ö?
3φ

φ

In spherical coordinates (C, Q, φ), the Laplace operator is given by : 

Δ? = ∇'? =
1
C'

Ö
ÖC

C'
Ö?
ÖC

+
1

C' sin Q
Ö
ÖQ

sin Q
Ö?
3Q

+
1

C' sin' Q
Ö'?
Ö¥'

The gravitational potential and the pressure are only 
function of the radius C, then the Euler’s equation can 
be written as :

−
1
2
3<
3C

−
3Φ&
3C

= 0

and the Poisson’s equation : 
1
C'

3
3C
C'
3Φ&
3C

= 4A∞2

2
35⃗
36
+ 2(5 8 ∇)5⃗ = −∇< − 2∇Φ&

0 0

Hydrostatic 

equilibrium 

(D = 0)

∇'Φ& = 4A∞2



The isothermal sphere
SINGULAR ISOTHERMAL SPHERE

In the following we assume an isolated single isothermal 
sphere, and we will try to get the solution (pressure, 
mass, radius)

The gravitational force is given by : 

−2∇Φ& = −
∞Æ2
C'

Then, from the Euler’s equation we get : 
3<
3C

= −
∞Æ2
C'

where the mass Æ, is the mass within a radius C :

Æ = Æ C = ∫"
4
2 Cd 4ACd'3Cd

The equation of state (< = 2
E&7
c
= â7

'2) can be 
written as : 

32
3C

= −
∞Æ

â7
'
2
C'

Then : 

C'
1
2
32
3C

= −
∞Æ

â7
'

Taking the radius derivative gives :
3
3C

C'
3 ln 2
3C

= −
∞

â7
'
3Æ
3C

with .a
.4
= 4AC'2, then 

3
3C

C'
3 ln 2
3C

= −
∞

â7
' 4AC

'2

The exact solution of this equation is : 

2 C =
â7
'

2A∞C'

−
1
2
3<
3C

−
3Φ&
3C

= 0

3 ln 2
3C



The isothermal sphere
SINGULAR ISOTHERMAL SPHERE

From the previous equation, we can determine :
• The total mass of the cloud 

M r" = W
"

4- â7
'

2A∞C'
4AC'3C =

2â7
'C"
∞

• In equilibrium, there must be an external pressure 
equaling the pressure at the surface of the cloud :  

<" = â7
'2 C" =

â7
*

2A∞C"
'

• The cloud radius and isothermal sound speed can be 
estimated from the Mass and external pressure 

• Although the density and pressure diverge at C → 0, 
the total mass, internal energy, etc.. are bounded

2 C =
â7
'

2A∞C'

Æ C = W
"

4
2 Cd 4ACd'3Cd

Singular sphere because the density 
and pressure diverge at r=0



The isothermal sphere
SINGULAR ISOTHERMAL SPHERE

In the following we assume an isolated single isothermal 
sphere, and we will try to get the solution (pressure, 
mass, radius)

The gravitational force is given by : 

−2∇Φ& = −
∞Æ2
C'

Then, from the Euler’s equation we get : 
3<
3C

= −
∞Æ2
C'

where the mass Æ, is the mass within a radius C :

Æ = Æ C = ∫"
4
2 Cd 4ACd'3Cd

The equation of state (< = 2
E&7
c
= â7

'2) can be 
written as : 

32
3C

= −
∞Æ

â7
'
2
C'

Then : 

C'
1
2
32
3C

= −
∞Æ

â7
'

Taking the radius derivative gives :
3
3C

C'
3 ln 2
3C

= −
∞

â7
'
3Æ
3C

with .a
.4
= 4AC'2, then 

3
3C

C'
3 ln 2
3C

= −
∞

â7
' 4AC

'2

The exact solution of this equation is : 

2 C =
â7
'

2A∞C'

−
1
2
3<
3C

−
3Φ&
3C

= 0

3 ln 2
3C



The isothermal sphere
SINGULAR ISOTHERMAL SPHERE

From the previous equation, we can determine :
• The total mass of the cloud 

M r" = W
"

4- â7
'

2A∞C'
4AC'3C =

2â7
'C"
∞

• In equilibrium, there must be an external pressure 
equaling the pressure at the surface of the cloud :  

<" = â7
'2 C" =

â7
*

2A∞C"
'

• The cloud radius and isothermal sound speed can be 
estimated from the Mass and external pressure 

• Although the density and pressure diverge at C → 0, 
the total mass, internal energy, etc.. are bounded

2 C =
â7
'

2A∞C'

Æ C = W
"

4
2 Cd 4ACd'3Cd

Singular sphere because the density 
and pressure diverge at r=0



Summary of the isothermal 
sphere

Singular Isothermal sphere  
T=cst

2
35⃗
36
+ 2(5 8 ∇)5⃗ = −∇< − 2∇Φ&

1
C'

3
3C
C'
3Φ&
3C

= 4A∞2−
1
2
3<
3C

−
3Φ&
3C

= 0

∇'Φ& = 4A∞2

Hydrostatic equilibrium
Spherical coordinates

Hydrostatic equilibrium
Spherical coordinatesr0

V0 , P0

2 C =
â7
'

2A∞C'
<" = â7

'2 C" =
â7
*

2A∞C"
'

These solutions (2 C and P C ) diverge at C → 0
Good description of the problem when C ≫ 0



The isothermal sphere
GENERAL SOLUTION

The Euler’s equation gives : 

−
1
2
3<
3C

−
3Φ&
3C

= 0

with < = â7
'2, then :

−
â7
'

2
32
3C

=
3Φ&
3C

Integrating gives :

− ln2 =
Φ&
â7
' + Ur6!

Or : 

2 C = 2, exp −
Φ& C

â7
'

To simplify the analysis, we need to introduce 
dimensionless variables : 

∑ =
Φ&
â7
' âm3 ∏ =

4A∞2,
â7
'

#/'

C

The the Poisson’s equation becomes :
1
∏'

3
3∏
∏'
3∑
3∏

= !1e

The solution of previous equation is : 

∑ = ln
∏'

2

2, = 2 C = 0 ≠ 0

∇'Φ& = 4A∞2



The isothermal sphere
GENERAL SOLUTION

The boundary solutions we can assume are :
- No gravitational force at the center of the cloud :

3∑
3∏ fg"

= 0

- The density at the center of the cloud must be 
2,, then ∑ ∏ = 0 = 0

No analytical solution, equation must be 
integrated numerically. 

However, we can estimate the total mass of the 
cloud : 

Æ C" = W
"

4-
24AC'3C

Introducing the dimensionless variables gives :

Æ C" = 4A2,
â7
'

4A∞2,

!/'

W
"

f-
!1e∏'3∏

Then : 

Æ C" = 4A2,
â7
'

4A∞2,

!
'
∏'
3∑
3∏ fgf-

There is one more parameter compared to the 
singular solution : 2, , and we need to also specify 
â7
' , C"



The isothermal sphere
GENERAL SOLUTION

We can also study the mass of the cloud as a 
function of the density contrast defined as 
2,/2" , where 2" = 2 C"

di
m

en
sio

nl
es

s c
lo

ud
 m

as
s  

  ~
=
# "5 ( ∞

' ( Æ
/â

7*

There is a maximum cloud mass (~#) for 
which equilibrium can be reached. 



The polytropic sphere

The equation state of the polytropic sphere is : 
< = Κ2#$

#
R = Κ2h

where m is the polytropic index :

- n=0 for rocky planets
- n=1.5 for star cores 

For the general polytropic case, we will 
demonstrate in problem sheet that the 
temperature always follows the gravitational 
potential : 

E(+ =
1 − Γ
Γ

FΦ&



Virial equilibrium for the self-
gravitating sphere

External medium

r 0

V0, M0

P0

P0

In the following, we will test if the solutions we find for the isothermal 
sphere are stable. 

The equations of hydrostatic equilibrium are :
3<
3C

= −
∞Æ2
C'

and 
3Æ
3C

= 4AC'2

To simplify, we will consider the mass as an independent variable, such 
as : 3C = .a

*+4(i
, then: 

4AC!3< = −4AC ∞Æ23C = −
∞Æ
C
3Æ

W
6g",[g[.

6g6-,[g[-
3T 3< = −W

"

a-∞Æ
C
3Æ



Virial equilibrium for the self-
gravitating sphere

External medium

r 0

V0, M0

P0

P0

To solve the previous equation, we need to integrate by part :

W
:

>
S º 5d º 3º = S º 5 º :

> −W
:

>
Sd º 5 º

Therefore, we obtain : 

3 <T ",[.
6-,[- − 3W

",[.

6-,[-
<3T = −W

"

a-∞Æ
C
3Æ

3<"T" = 4AC"
!<"

Gravitational 
potential (Ω)

3W
"

a- <
2
3Æ + Ω = 4AC"

!<"

Equation of virial equilibrium

W
6g",[g[.

6g6-,[g[-
3T 3< = −W

"

a-∞Æ
C
3Æ



Stability of an isothermal cloud

For an isothermal sphere, we know that : < = â7
'2, hence :

3W
"

a- <
2
3Æ = 3â7

'Æ" = 3
E(+
F
Æ"

We also know that :

Ω = −
3
5
∞Æ"

'

C"
Then the virial equilibrium equation for an isothermal cloud becomes :

3
E(+
F
Æ" −

3
5
∞Æ"

'

C"
− 4AC"

!<" = 0

Associated with 
thermal pressure

Associated with 
gravity 

Associated with 
external pressure

Stability conditions

- If =0 è equilibrium
- If <0 è external pressure and gravity are 

“stronger” than thermal pressure : the cloud is 
collapsing

- If >0 è the thermal pressure is larger than 
external pressure and gravity : the cloud is 
expanding. 

3W
"

a- <
2
3Æ + Ω = 4AC"

!<"



Stability of an isothermal cloud

The external pressure <" is given by : 

<"(C) =
3E(+Æ"

4AC!F
−

3
20A

∞Æ"
'

C*

The maximum of this function is given by :
3<" C
3C

= C=:U =
4
15
∞Æ"

'F
E(+

with a maximum pressure of : 

<=:U = U&
E(+
F

* 1

∞!Æ"
'

rmax

Stability of the cloud of mass Æ" and with C > C=:U : 
- If the external pressure is increased by a small amount, the system will lie above the equilibrium line, then the virial 

equation shows that the cloud must shrink.  
- If the external pressure <" > <=:U the cloud is not stable and can’t find any radius at which it will be in equilibrium : the 

cloud is collapsing. 



Stability of an isothermal cloud
For a given external pressure, a cloud will become 
unstable to collapse when its mass exceeds :

Æ = U&
#/' E&7

c

' #

`'/(j-
5/( = U&

#/' :+
'

i-
5/(`'/(

Consider a cloud with a given 2,/2", if we increase the 
external pressure then :

- The dimensionless mass will increase (~ = #"

5
(∞

'
(Æ/â7

* ) 

- For stability the internal pressure of the cloud must 
increase

- But at constant T, this requires 2 in the cloud to 
increase and hence 2,

Bonnor-Ebert mass

di
m

en
sio

nl
es
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ud
 m
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s  

  ~
=
# "5 ( ∞

' ( Æ
/â

7*

2,
2" =:U

≈ 14.1

~# ≈ 1.18

N&'( = Q)
R*P
S

+ 1
T,U$

"



Jeans instability 

Initial conditions of the system (the fluid is stationary) : 
• D( = 0
• F( = @G&=
• H( = @G&=

PERTURBATION ANALYSIS OF 
FLUID EQUATIONS

Introducing perturbed quantities : 
• F = F( + F$
• D = D( + D$
• Φ2 = Φ( +Φ$
• H = H( + H$

As previously, the unperturbed potential is assumed to 
satisfy :

∇'Φ" = 4A∞2"

There is no solution when 2" = Ur6!

The equation of continuity given by : 
HI
HJ + ∇. IL = 0

becomes (to first order):

I& ∇. L= = −
MI=
MJ

Similarly, the other hydrostatic equations (Euler’s & Poisson’s) 
become : 

ML=
MJ = −∇N= −

1
I&
∇O=

And 
∇,N= = 4QR I=

We also assume isothermal behaviour such as :
<# = â7

'2#

2
35⃗
36
+ 2(5 8 ∇)5⃗ = −∇< − 2∇Φ&

∇'Φ& = 4A∞2



Jeans instability 

Differentiating the continuity equation with respect to 
time, we obtain : 

Ö
Ö6

∇. 5# = −
1
2"

Ö'2#
Ö6'

Taking the divergence of the Euler equation :
Ö
Ö6

∇. 5# = −∇'í# −
â7
'

2"
∇'2#

PERTURBATION ANALYSIS OF 
FLUID EQUATIONS

Combining the two previous equation gives :

∇' −
1

â7
'
Ö'

Ö6'
+
4A∞2"
â7
' 2# = 0

similar to the wave equation !

Therefore, we should look for wave-like solutions of the form :
2# ∝ !@ E.4⃗1l?

which gives a dispersion relation :
â7
'E' − Ω' = 4A∞2"

The system is unstable when the modes grow (i.e. Ω' < 0). 
Hence we can define a critical wave number (when Ω' = 0) : 

EQ
' =

4A∞2"
â7
' =

4A∞F
E(+

2"

And a characteristic wavelength :
zS =

2A
EQ

2" ∇. 5# = −
Ö2#
Ö6

Ö5#
Ö6

= −∇í# −
1
2"
∇<#



Jeans instability 

The total mass within a sphere of diameter equal to 
the Jeans wavelength zQ is :

ÆS =
4
3
A

zQ
2

!

2"

Moreover : 

zS
' =

2A
EQ

'

=
AE(+
∞F2"

Then : 
zS
2
=
3
A'
∞ÆSF

E(+

PERTURBATION ANALYSIS OF 
FLUID EQUATIONS

For z > zS or Æ > ÆS the modes grow exponentially : the cloud 
is collapsing 

The Jeans Mass is the mass above which gravity dominates. 

The Jeans mass is usually defined as : 
ÆS
Æ⨀

= 1.0×
+
101

!/'

×
m\

2×10#"~1!

1#/'

Strong dependance 
on temperature

Importance of cooling which
could reduce the temperature
and therefore allow the
collapse of less massive clouds



Jeans instability 
PERTURBATION ANALYSIS OF 

FLUID EQUATIONS

In the early Universe, the absence of metals and dust (not 
enough time to form ) and the much reduced molecular gas 
content implies very poor cooling 

Formation of massive stars in the early Universe



Magnetic fields

Magnetic fields are important components of the ISM : these can 
provide additional forces which can act to stabilise clouds against 
gravitational collapse. 

The derivation of the Euler equation in the case of magnetic 
fields is complex. We will just give the solution of the Euler 
equation :

<" =
3E(+Æ"

4AC"
!F

+
1

4AC"
* æ

Φa
'

2F"
−
3
5
∞Æ"

'

Thermal 
Pressure

Magnetic 
pressure

Gravity

The pressure will be a monotonically decreasing 
function of r if :

æ
Φa
'

2F"
>
3
5
∞Æ"

'

The clouds will always be stable if Φa is a 
constant. 



Application to molecular clouds
Giant Molecular Clouds can be seen as swarms of more 
coherent clumps. 
The Jeans mass for gas with m\~2000 and +~101 is 
ÆS~3Æ⨀. This is well below the observed masses of the 
individual clouds and of order the mass of typical dense 
cores. 
è There must be an additional form of support : the 
magnetic pressure.

Zeeman splitting provides a method for measuring the 
magnetic fields in clouds, although this has only be 
successful in a handful of dark clouds. 
From the magnetic virial equation we can find the 
maximum cloud mass which could be supported against 
its own self-gravity by magnetic pressure alone :

Æ' =
5
3∞

æ
A'C*s'

2F"



Application to molecular clouds
Then :

Æ ≈
s
m+

C
#U

'
Æ⨀

Inserting typical values for several cloud types, we can show that most dark clouds can 
be stabilised by magnetic effects :

• For dense cores Æ~ÆS
• The density ratio is measured to 2,/2"~10

Cloud type ntot
[106m-3]

L 
[pc]

T
[K]

M
[ø⨀]

B 
[nT]

Giant Molecular Cloud 100 50-500 15 105 1 ?
Dark Cloud Complex 500 10 10 104 1 ?
Individual Dark Cloud 103 2 10 30 2-10
Dense Core 104 0.1 10 10 2-10



Summary of yesterday’s lecture
Singular Isothermal sphere  

T=cst
2
35⃗
36
+ 2(5 8 ∇)5⃗ = −∇< − 2∇Φ&

1
C'

3
3C
C'
3Φ&
3C

= 4A∞2−
1
2
3<
3C

−
3Φ&
3C

= 0

∇'Φ& = 4A∞2

Hydrostatic equilibrium
Spherical coordinates

Hydrostatic equilibrium
Spherical coordinatesr0

V0 , P0

2 C =
â7
'

2A∞C'
<" = â7

'2 C" =
â7
*

2A∞C"
'

These solutions (2 C and P C ) diverge at C → 0
Good description of the problem when C ≫ 0



Summary of yesterday’s lecture
Isothermal sphere  
General Solution

r0

V0 , P0

2 C = 2, exp −
Φ& C

â7
'

2, = 2 C = 0 ≠ 0

∑ =
Φ&
â7
' âm3 ∏ =

4A∞2,
â7
'

#/'

C

1
∏'

3
3∏
∏'
3∑
3∏

= !1e

Introducing dimensionless variables

Euler’s equation

Æ C" = 4A2,
â7
'

4A∞2,

!
'
∏'
3∑
3∏ fgf-

No analytical solutions ;
numerical integration needed 

M r" =
2â7

'C"
∞

Comparing with the mass expression 
obtained from the singular isothermal 
sphere analysis, we see that one more 
parameter is needed F3
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  4
=
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2" =:U
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Summary of yesterday’s lecture

Stability of a gas cloud

r0

V0 , P0

3
E(+
F
Æ" −

3
5
∞Æ"

'

C"
− 4AC"

!<" = 0

Virial equation for a spherical gas cloud

Associated with 
thermal pressure

Associated 
with gravity 

Associated with 
external pressure

- If =0 è equilibrium

- If <0 è the cloud is collapsing

- If >0 è the cloud is expanding. 

<"(C) =
3E(+Æ"

4AC!F
−

3
20A

∞Æ"
'

C*

Evolution of the pressure

rmax



Summary of yesterday’s lecture

2 = 2" + 2#
5 = 5" + 5#
Φ& = Φ" +Φ#
< = <" + <#

Jeans Instability 
Introducing perturbed quantities 

2
35⃗
36
+ 2(5 8 ∇)5⃗ = −∇< − 2∇Φ&

∇'Φ& = 4A∞232
36
+ ∇. 25 = 0

2" ∇. 5# = −
Ö2#
Ö6

Ö5#
Ö6

= −∇í# −
1
2"
∇<#

∇'í# = 4A∞ 2#

Only keeping first order terms

∇' −
1

â7
'
Ö'

Ö6'
+
4A∞2"
â7
' 2# = 0



Summary of yesterday’s lecture

∇' −
1

â7
'
Ö'

Ö6'
+
4A∞2"
â7
' 2# = 0

Wave equation 

2# ∝ !@ E.4⃗1l?
Form of the solution

â7
'E' − Ω' = 4A∞2"

Dispersio
n equation

EQ
' =

4A∞2"
â7
' =

4A∞F
E(+

2"
Cr

iti
ca

l 
W

av
e 

N
um

be
r

Ω = 0

Characteristic 

W
avelength 

zS =
2A
EQ

ÆS = T"2" =
4
3
A

zQ
2

!

2"
Jeans Mass

ÆS
Æ⨀

= 1.0×
+
101

!/'

×
m\

2×10#"~1!

1#/'The Jeans Mass is the Mass above which gravity dominates => collapse !
Look at the strong dependence in temperature, and hence the crucial role 
of cooling (previous chapter) in the formation of structure !



Question : spectra if we have as 
many emissions as absorptions



Gravitational collapse
Chapter 4 



Free-fall time
The free-fall time is the characteristic time that 
would take an object to collapse under its own 
gravity, if no other forces exist to oppose the 
collapse. 

We will first consider the collapse of a cloud 
within a galaxy, but this method applies also at 
larger scales (i.e., galactic scale)

INITIAL CONDITIONS OF THE COLLAPSE

• Cloud of radius R and mass M0

• Gas density 2"
• Gas molecules initially at r0 will have a mass of 

gas M within the radius and during collapse this 
remains constant

External medium

R

V0, M0,2"

P0

From Newton gravity the equation of motion is :
Ö'C
Ö6'

= −
∞Æ4

C'

or 
Ö
Ö6

ÖC
Ö6

= −
∞Æ4

C'



Free-fall time
Multiplying  by 84

8?
and integrating over dt give :

1
2
ÖC
Ö6

'

=
∞Æ
C 4-

4

=
∞Æ
C"

C"
C
− 1 =

4A
3
C"
'2"∞

C"
C
− 1

Then : 
ÖC
Ö6
=

8A
3
C"
'∞2"

C"
C
− 1

Hence : 

Ö6 =
3

8ACA
'∞2"

ÖC

C"
C − 1

Integrating :

6 =
3

8AC"
'∞2"

#/'

W
"

4- ÖC

C"
C − 1

Substituting u = r/r" gives :

6 =
3

8A∞2"

#/'

W
"

# ÖS

1
S − 1

Therefore, the free-fall time is given by :

655 =
3A

32∞2"

#/'

Tabulated è +
'

The free-fall time depends on density : if the inner 
region of the cloud are denser, these will collapse 
firstè inside-out collapse



Inside-out collapse
Adding to the previous initial conditions that the cloud has an 
isothermal behavior. 

We also assume that there is a central sink for inflowing material 
(the growing central object: e.g., a protostar)

External medium

R

V0, M0,2"

P0

The dynamic of the problem is governed by the Euler’s equation 
and the continuity equation (radial equations) :

35
36
+ 5

35
3C

= −
â7
'

2
32
3C

−
∞Æ4

C'

and 
32
36
+
1
C'
3(C'25)
3C

= 0

where 2 = 2 C, 6 and 

Æ4(6) = W
"

4
4AC'2 C, 6 3C

Differentiating gives : 8a7
8?

= −4AC'25

!
8#⃗
89 + !(# < ∇)#⃗ = −∇A − !∇Φ"

!F
!&
+ ∇. FD = 0

∇: ⋅ N =
1
O%

P
PO

O%
PN
PO

Divergence in 

spherical 

coordinates



Inside-out collapse
SIMILARITY ANALYSIS

In the previous equations we can identify : 

• The independent variables : C and 6

• The constants : ∞ and â7
• The variables : 2 C, 6 , 5 C, 6 and Æ(C, 6)

The only way to form a dimensionless length is : 

º =
C
â76

We are doing a similarity analysis; therefore, we are 
searching for solutions in the form :

Æ4 C, 6 =
â7
!6
∞
~(º)

2 C, 6 =
1

4A∞6'
p º

5 C, 6 = â7æ º

~ º , â º and æ(º) are dimensionless

Then : 

3º =
1
â76

3C −
C

â7 6'
36

Ö
ÖC ?

=
1
â76

Ö
Öº

Ö
Ö6 4

=
Ö
Ö6 U

+
Öº
36 4

Ö
Öº

=
Ö
Ö6 U

−
º
6

Ö
Öº

35
36
+ 5

35
3C

= −
â7
'

2
32
3C

−
∞Æ4

C'

32
36
+
1
C'
3(C'25)
3C

= 0



Inside-out collapse
SIMILARITY ANALYSIS

The equations we must solve are :
35
36
+ 5

35
3C

= −
â7
'

2
32
3C

−
∞Æ4

C'
32
36
+
1
C'
3C'25
3C

= 0
ÖÆ
ÖC

= 4AC'2

Knowing that : 
Ö
ÖC ?

=
1
â76

Ö
Öº

Ö
Ö6 4

=
Ö
Ö6 U

+
Öº
36 4

Ö
Öº

=
Ö
Ö6 U

−
º
6

Ö
Öº

The equations become : 
~ = º'p º − æ

º − æ ' − 1
1
p
3p
3º

= p −
2
º
º − æ º − æ

º − æ ' − 1
3æ
3º

= p º − æ −
2
º
(º − æ)

These equations must be solved numerically, but we can learn 
a lot from their form.



Inside-out collapse
SIMILARITY ANALYSIS

An exact solution is the singular isothermal  sphere, 
where we demonstrated that : 

M r" =
2â7

'C"
∞

=
â7
!6
∞

2º

then ~ = 2º, hence :
~ = 2º = º'p º − æ

or

p =
2

º º − æ

and æ =
m 4,?
:+

. In the singular isothermal sphere, the 

system is in equilibrium (5 C, 6 = 0) then æ = 0 and 

p =
2
º'

~ = º'p º − æ

º − æ ' − 1
1
p
3p
3º

= p −
2
º
º − æ º − æ

º − æ ' − 1
3æ
3º

= p º − æ −
2
º
(º − æ)

We are looking for solutions with the form :

Æ4 C, 6 =
â7
!6
∞
~(º)

2 C, 6 =
1

4A∞6'
p º

5 C, 6 = â7æ º



Inside-out collapse
SIMILARITY ANALYSIS

Another singular solution is given by :
º − æ = 1

p =
2
º

~ = º'p º − æ

º − æ ' − 1
1
p
3p
3º

= p −
2
º
º − æ º − æ

º − æ ' − 1
3æ
3º

= p º − æ −
2
º
(º − æ)

We are looking for solutions with the form :

Æ4 C, 6 =
â7
!6
∞
~(º)

2 C, 6 =
1

4A∞6'
p º

5 C, 6 = â7æ º

º = 1 is the crucial transition point :

• At º > 1: the solution is the singular isothermal sphere

• At º < 1 : then æ < 0, hence 5 C, 6 < 0è infall

The transition critical point between infall and static 
isothermal solution  (º, = 1) translates into C, = â76

This is a wave moving outwards 
at the sound speed â7



Inside-out collapse

collapse

static

Collapse front
expanding
outwards



Inside-out collapse
To do the previous analysis, we assumed that :

• The system is the equilibrium isothermal sphere

• The boundary conditions are those for that initial state

• There is a sink for matter reaching the origin : this will
turn into a protostar

Another interesting case to consider is that of a cloud
which is marginally unstable, for example with a mass
slightly larger than the Bonnor-Ebert mass. We then
perturbate the system and follow the evolution.

Example of numerical solution : velocity during the 
collapse of an isothermal sphere with mass slightly 
above the Bonnor-Ebert mass

q=0 : start of the creation of the protostar as mass starts
to flow into the sink

º =
C
â76



Physics Analysis
The transition point moves outwards as a rarefaction 
wave with only the gas inside of the radius ≠55 ≈ â76
moving inward.

After a short fraction of a free-fall time a large fraction 
of the gas within this radius is moving supersonically 
with the velocity increasing to the centre : 

C/ 5 is less than the sound crossing time.

Gas is falling onto a growing central object, the 
protostar, with a mass Æ∗ :

- close to this protostar, gas is approximately 
in free fall

- 555 ≈
'`a∗
4

#/'

At the transition point, the gas moves approximately 
sonically :

- 555 ≈ â7

-â7
'~Æ∗∞/≠55

collapse

static

Collapse front
expanding
outwards

1
2
555
' =

∞Æ
C

C = â76



Physics Analysis
The rate of growth of Æ∗ is determined by accretion at 
a rate : 

3Æ
36

= lim
4→"

−4AC'52

Assuming constant accretion rate Æ∗ =
.a
.?
6 and 

3Æ∗

36
≈
Æ∗

6
≈
â7
'

∞

≠55
6
≈
â7
!

∞

≠55 ≈ â76

Inserting values, the accretion rate for the growth of the 
protostar is :

()∗
(* ≈ 2×10DE 0

101

F
G)⊙ 23DI

The density profile in the collapse region must satisfy : 

2 =
Æ̇

4AC' 5
=

Æ̇
4AC'555

=
Æ̇

4AC!/' 2∞Æ∗

collapse

static

Collapse front
expanding
outwards

â7
'~Æ∗∞/≠55

â7
' =

E(+
F



Physics Analysis
Isothermal sphere
~W-"

Evolution of the density 
profile with time

Since the Jean Mass is ÆQ ∝ 21#/'inner 
regions have smaller Jeans Mass
è smaller regions will collapse into smaller 

sub-clumps
è fragmentation 

2 C =
â7
'

2A∞C' 2 =
Æ̇

4AC!/' 2∞Æ∗

Free fall region
~W-,/"

Isothermal sphere
~W-"

The collapse starts at t=0

Free fall region
~W-,/"

Isothermal sphere
~W-"



Summary of the formation of 
structures in the Universe

Gas clouds with multi-phases

dense regions  Low-density regions  

fast cooling

collapse

Gas clouds Gas clouds Gas clouds

Heating of 
collapsing gas

Protostar Protostar Protostar The first part of this course will be to describe the
processes responsible for the cooling of the gas, the
heating of the gas and the formation of protostars.

FROM THE FIRST LECTURE

&'' =
3?

32RF(

$/%

[X
[⨀

= 1.0×
]
10^

./,

×
6[

2×10=&`*.

*=/,

collapse

static

Collapse front
expanding
outwards



Summary of Friday’s lecture

655 =
3A

32∞2"

#/'

We defined the free-fall time as the characteristic time 
that would take an object to collapse under its own gravity

Only depends on the density, suggesting 
that denser region will collapse first 
è inside-out collapse

2 C =
â7
'

2A∞C'



Summary of Friday’s lecture

External medium

R

V0, M0,2"

P0 35
36
+ 5

35
3C

= −
â7
'

2
32
3C

−
∞Æ4

C'

32
36
+
1
C'
3(C'25)
3C

= 0

We studied the case of a collapsing gas cloud 
with a sink at the center for the inflowing 
material, and do a similarity analysis to solve 
the Euler’s and continuity equations 

~ = º'p º − æ

º − æ ' − 1
1
p
3p
3º

= p −
2
º
º − æ º − æ

º − æ ' − 1
3æ
3º

= p º − æ −
2
º
(º − æ)

We were looking for 
solutions with the form :

S\ T, J =
V].J
R 7(W)

I T, J =
1

4QRJ, A W

L T, J = V]@ W

º =
C
â76

Dimensionless variable  



Summary of Friday’s lecture

External medium

R

V0, M0,2"

P0

One exact solution of previous solution is the 
isothermal sphere, for which we found : 

M r" =
2â7

'C"
∞

=
â7
!6
∞
2º Æ4 C, 6 =

â7
!6
∞
~(º)

º =
C
â76

~ º = 2º

~(º) = º'p º − æ p =
2

º º − æ

We also defined : 5 C, 6 = â7æ º

In the case of the singular 
isothermal sphere, the system is in 
equilibrium : 5 C, 6 = 0 → æ = 0

p =
2
º'

2 C, 6 = #
'+`?(U(

= :+
(

'+`4(



Summary of Friday’s lecture

External medium

R

V0, M0,2"

P0

Another singular solution is 
obtained when º − æ = 1

~ = º'p º − æ

º − æ ' − 1
1
p
3p
3º

= p −
2
º
º − æ º − æ

º − æ ' − 1
3æ
3º

= p º − æ −
2
º
(º − æ)

º =
C
â76

There is a transition point when 
º = 1 (i.e. when C = â76)

º >
1º <

1

â76 > C
then æ < 0

=> Infall

â76 < C
then æ > 0

=> Isothermal sphere 



Summary of Friday’s lecture

collapse

static

Collapse front
expanding
outwards

º =
C
â76



Summary of Friday’s lecture

collapse

static

Collapse front
expanding
outwards

2 =
Æ̇

4AC!/' 2∞Æ∗

2 C =
â7
'

2A∞C'

Central sink



Supervision



From gas cloud to 
collapsed object
Chapter 5



Basic physics of object 
formation

If q, ≪ 6,Aoo:[2< → the system will evolve isothermally 

The shortest collapse time is the free-fall time (by definition).

If q, ≪ 655 → the cloud will collapse isothermally 

The Jeans Mass is given by :
SX
S⨀

= 1.0×
+
10X

./,

×
![

2×10=&7*.

*=/,

then if the cooling is efficient, the Jeans Mass decreases and, as 
we see in the previous chapter, the density increases at small R. 

This results in the collapse of smaller region of the cloud in a 
process called fragmentation. 

Consequence of an increase in density :

- The optical depth : q ∝ 2'/!

- The collapsed object (the first core) becomes optically 
thick (q > 1) making the cooling inefficient.

- The collapse will continue, and the temperature of the 
core rises as the collapse proceeds adiabatically. 

q = p≠ = 2√≠

≠ ∝ 2#/!

Cooling time

Mass absorption 
coefficient



Evolution of the first core
The first core is mainly composed.

We have demonstrated that the virial equation for 
an isothermal sphere is :

3
E(+
F
Æ" −

3
5
∞Æ"

'

C"
− 4AC"

!<" = 0

Neglecting the external pressure, gives :

+pF ≈
F
5E(

∞Æ
≠

≈ 850
Æ

5×101'Æ⊙

≠
5HÇ

1#

1

and  the accretion rate to this core is (demonstrated 
in the last chapter) :

3Æ∗

36
≈ 2×101H

+,oA3.
101

!
'
Æ⊙ ƒC1#

Further mass addition to this first core will lead to 
the increase of temperature. 

collisional dissociation of H2 begins, part 
of the potential energy goes into H2 dissociation not 
into temperature increase. 

As soon as the dissociation of H2 begins, the rise in 
temperature happens with a slower rate.

The central core has a significant density gradient 
and eventually undergoes collapse to form a very 
dense central core.

Radius of the 
First core



Structure around the protostar
The collapse of the first core gives a 
protostar with the following properties :

- Æ~0.1 Æ⨀

- ≠~5≠⨀

- T~10O1

- 2 ∼ 101'B U~1!

ACCRETION LUMINOSITY

The energy balance of the protostar is given 
by :

Ç&4 + Ç?I + G[ + ¶46 = 0

Gravitational 
potential

Internal 
energy 

Potential 
energy

Energy radiated over the 
formation time of the protostar

With :

• Ç&4 ≈ −∞Æ∗
'/≠∗

• Ç?I ≈ −Ç&4/2

• G[ =
ra∗
=1

BJ \
'

+ G@ % +
sa∗BK \<

*=1

Fraction of Hydrogen

Fraction of Helium

Ionisation potential of 
Helium (75 eV)Ionisation potential of 

Hydrogen  (13.6 eV)

Dissociation energy of 
H2 (4.2eV)

Do we really need to include the energy radiated ? If Z\ = 0, then : 
[^\ −

1
2[^\ + )L = 0

−
1
2[^\ = )L

Hence 

6FE_ =
RS∗

,

2)L
= 60

S∗

S⊙
6⨀

which is much larger than what is observed for T Tauri stars (≈ 8S⊙) .



Structure around the protostar

Artist view of a T Tauri star

From the previous discussion, it implies that ¶4 ≠ 0.

Indeed, ¶4 must be close to the accretion luminosity :

¶4 ≈ ¶:,, =
∞Æ∗Æ̇
≠∗

= 61
Æ̇

5×101OÆ⊙ƒC1#
Æ∗

Æ⊙

≠∗
5≠⊙



Structure around the protostar
ACCRETION SHOCK AND DUST ENVELOPPE

The accreting gas is infalling with a velocity close to 
the free-fall velocity :

555 ≈
2∞Æ∗

C

#
'
= 280

Æ∗

Æ⊙

#
' ≠∗
5≠⊙

1#'
E~/r

This is much larger than the sound speed in the gas 

A strong shock forms with 522 ≈ 555, giving a 
post-shock temperature of 106K

The whole region is optically thick with an effective 
temperature such that :

¶:,, ≈ 4A≠∗'n(+<55
*

Or :

] ≈
b[∗[̇
4+5bd∗.

=
c
= 7300

[̇
5×10*d[⊙hi*=

*=c [∗

[⊙

=
c d∗
5d⊙

*./c

^

¶:,, =
∞Æ∗Æ̇
≠∗

At this temperature, UV and 
X-Rays photons are produced 

z=:U =
{
+

Wien’s displacement law



Surrounding the protostar, the gaseous envelope also contains dust. 

The UV flux produced by the young protostar can vaporize dust grains 
within a region called the opacity gap out to a radius known as the dust 
destruction front. 

Outside of this radius, the dust absorbs the radiation and re-radiates. In 
the dusty layer, the dust temperature must drop until the layer becomes 
optically thin to re-emission of infrared radiation from the dust. This 
occurs at (dust photosphere):

dLefg =
1
.7

Structure around the protostar

Limit : q = 1

q = p≠

p = 2√

Mass Absorption Coefficient



Structure around the protostar

ALMA observation of HL Tauri 
(distance : 450 light-years)



Structure around the protostar



Evolution of the protostar
PROTOSTELLAR STRUCTURE DURING ACCRETION

The structure of the protostar will be governed by the equations of 
hydrostatic equilibrium plus the equations describing the thermal 
structure (cf. last year course).

The equations governing the evolution are :

−
1
.
j,
ji

−
jΦ^
ji

= 0

And the definition of mass :
j[
ji

= 4+i,.

Also 

, =
.lb]
m

Euler’s equation

Equation of state

Applying the first law of thermodynamics gives :

.]
jI
j'
= .- − ∇. p⃗

where F is the radiative flux defined as :

p =
O

4+i,

Hence :
jO
ji

= 4+i,.- − 4+i,.]
jI
j'

If the heat is transported by radiative diffusion we also have :
O

4+i,
= −

4qr].

3.7
j]
ji

These equations can not be solved analytically, and we must rely 
on numerical simulations to guide our understanding of the 
physics.  



Evolution of the protostar
The boundary conditions of previous equations are :

• [ d → 0 = 0

• O d → 0 = 0

• O%-\hE?M = O∗ − OE??
• The surface pressure must balance the momentum flux, or ram pressure 

of the infalling gas which is ∼ .uhh, giving :

, i& =
[̇
4+

2b[∗

d∗d
=/,

Numerical integration gives for the accretion rate [̇ = 1×10*d[⊙/hi*=

• If initially d∗is large, the entropy of the gas added is low and the protostar 
shrinks under gravity. The converse is true is d∗is small

• The protostar is characterized by its entropy profile S(r)

• The results show that i∗
j∗

is an increasing function in the early stages which 
gives an increasing entropy distribution with radius.

555 ≈
2∞Æ∗

C

#/'
2 =

Æ̇

4AC!/' 2∞Æ∗

≠
↗
wh
en
M
↗



Evolution of the protostar
ONSET OF DEUTERIUM BURNING AND CONVECTION

Consider a fluid element which moves a small distance through the 
atmosphere Δi so that it remains in pressure balances with the 
surrounding gas. 

F,<= (

2@R? #

ΔC
• The element expands adiabatically to a lower density (.KHg= < .KHg

& )

• For stability, the density of this element must be greater than the 
density of the surrounding gas

• If the entropy is increasing with radius, the element is of lower 
entropy than the surrounding

• For an ideal gas :

I = rD log
,
.k

where | = rL/rD, is the heat capacity ratio.

Then if the density increases, the entropy decreases. 

2<U? "

2<U? #

The atmosphere is convectively stable if : 
!I
!i

> 0



Summary of Monday’s lecture

q = p≠ = 2√≠ ∝ 2'/!

When approaching the central sink = the first core, 
the density increases (see the density profile), then :

The optical depth increases 

Photons can not escape the 
optically thin medium 
è cooling becomes inefficient 

The temperature of the first core increases

The temperature becomes sufficient 
to start the dissociation of H2

Dissociation energy : 4.2 eV

As soon as the H2 dissociation begins, 
the rise in temperature happens at a 
slower rate (most of the energy goes 
into the H2 dissociation)



Summary of Monday’s lecture

The energy balance of the protostar is given by :
Ç&4 + Ç?I + G[ + ¶46 = 0

Gravitational 
potential

Internal energy 

Potential energy

Energy radiated over the formation 
time of the protostar

The collapse of the first core gives a protostar 
with the following properties :

- Æ~0.1 Æ⨀

- ≠~5≠⨀

- T~10O1

- 2 ∼ 101'B U~1!

Close to the first core, the accretion luminosity gives a “surface” 
temperature of :  

] ≈
b[∗[̇
4+5bd∗.

=
c
= 7300

[̇
5×10*d[⊙hi*=

*=c [∗

[⊙

=
c d∗
5d⊙

*./c

^

This temperature is sufficient to vaporize the dust grains 
surrounding the protostar è opacity gap !

We defined the photosphere radius as the radius at which light 
re-emitted by dust grain can escape : 

≠[IA? =
1
2√



Summary of Friday’s lecture

ALMA observation of HL Tauri 
(distance : 450 light-years)



Evolution of the protostar
At a temperature of about ] ∼ 10lK, the first nuclear fuel to ignite is 
the deuterium following :

,~ + =~ → .~J + |

which releases 5.5 MeV.

The heating rate due to this process is very dependent on temperature 
with -m ∝ ]==.o:

• The protostar is unable to effectively transport the large 
luminosity produced in the core via radiative transport

• The core heats up, reversing the entropy gradient and the 
protostar becomes convective

We can calculate the maximum energy flux which can be carried by 
pure radiative flux. This occurs when the entropy is constant. From the 
equation of protostellar structure we get : 

O?\Kg = 4+i,
4qr].

3.7
dT
!i %

= −
b[16+qr].

3.7
!]
!, %

¶
4AC'

= −
4âU+!

32√
Ö+
ÖC



Evolution of the protostar
• Although the amount of deuterium is small, convection 

helps to bring new fuel to the core from the accreting gas
• This deuterium burning phase acts as a thermostat – the 

deuterium thermostat
• Any rise in [∗/d∗increases the stellar entropy which, via 

convection, increases ]?; this leads to a substantial increase 
in -mwhich inflates the star, reducing [∗/d∗

As the protostar mass continues to grow via accretion, the
energy production from the deuterium burning remains
approximately constant and determined by the rate of supply of
new fuel from the accreting gas.



Evolution of the protostar
The maximum energy flux that can be carried by a pure radiative flux is : 

O?\Kg = 4+i,
4qr].

3.7
dT
!i %

= −
b[16+qr].

3.7
!]
!, %

Initially O?\Kg is much lower than the luminosity produced by deuterium 
burning and keeps rising. 

We can show that : 

• O?\Kg scales as [∗
==/,d∗

*=/,

• Eventually O?\Kg = Om and radiative energy transport can again 
remove energy from the core

O?\Kg for different 
stellar masses

= Om

Radiative 
transport 
èstops 
convection



Evolution of the protostar
Effectively the radiative transport acts as a 
barrier preventing deuterium reaching the core. 

Deuterium in the core is quickly depleted. 

Without convection new deuterium accreted 
onto the protostar accumulates in a shell.

Eventually the temperature of this shell reaches 
106K and the shell ignites

The hot outer shell leads to a substantial 
increase in the stellar radius



Evolution of the protostar



Evolution of the protostar
CONTRACTION AND HYDROGEN BURNING

The final stage of protostellar evolution is the
contraction of the star.

Without deuterium burning in the core, the self-
gravity of the protostar drives the gravitational
contraction of the star.

The rate at which the star contracts is determined
by the rate at which the star loses internal energy
via radiation : the Kelvin-Helmholtz timescale :

'p[ =
b[∗

,

d∗O∗
= 3×10I

[∗

[⊙

, d∗
d⊙

, O∗
O⊙

,

hi

As the contraction proceeds, the core temperature 
continues to rise until eventually 107 K.

At this temperature, hydrogen burning commences and 
halts the contraction ßrestarts central convection

Further temperature rise enables the CNO cycle

At this stage, the protostar is regarded as a pre-main 
sequence star



Evolution of the protostar



Summary of the first half of this 
course 

collapse

static

Collapse front
expanding
outwards

ÆS
Æ⨀

= 1.0×
+
101

!/'

×
m\

2×10#"~1!

1#/'

Jeans Mass : mass above which gravity dominates 



Summary of the first half of this 
course 



Galaxies and star-formation 
on galactic scales
Chapter 6 (part 2) 



Properties of Galaxies in the 
Local Universe

Edwin Hubble
1889-1953

Elliptical

Spiral-barred

Spiral

Irregular

THE GALAXY ZOO





Properties of Galaxies in the 
Local Universe

ELLIPTICALS / EARLY TYPE GALAXIES

a

b

The elliptical galaxies are classified following the ratio between 
their major (a) and minor (b)  axis, and named GR with m :

m = 10
â − {
â



Properties of Galaxies in the 
Local Universe

ELLIPTICALS / EARLY TYPE GALAXIES

The main properties of ellipticals are :
• Gas poor 
• No star formation 
• Old stars
• Stellar mass ranging between 10## and 10#! Æ⊙

The surface brightness of an elliptical galaxy is given by :

L ≠ = L" exp −
≠
â

#
*



Properties of Galaxies in the 
Local Universe

SPIRALS / LATE TYPE GALAXIES

A spiral galaxy is always composed of a bright bulge and a disk



Properties of Galaxies in the 
Local Universe

SPIRALS / LATE TYPE GALAXIES

The classification of spirals galaxies depends on the openness 
of arms and the prominence of the bulge. 

From Sa to Sc : the openness of the arms increases, and the 
bulge prominence decreases. 



Properties of Galaxies in the 
Local Universe

SPIRALS / LATE TYPE GALAXIES

The classification of spirals galaxies depends on the openness 
of arms and the prominence of the bulge. 

From Sa to Sc : the openness of the arms increases, and the 
bulge prominence decreases. 

The main properties of spirals are :
• Gas rich 
• star formation on-going
• Gas in both low density neutral hydrogen and dense 

molecular hydrogen
• The fractional mass of neutral hydrogen to the total is <0.03 

for a Sa, and goes up to 0.1 for a Sc

?\/ =
Æ\/

Æ?A?



Properties of Galaxies in the 
Local Universe

SPIRALS / LATE TYPE GALAXIES

We can refine the classification by adding : 
- The presence of a ring ( r )
- The definition of the arms : from well defined ‘I’ to fuzzy ‘V’

SBb(r)III



Properties of Galaxies in the 
Local Universe

SPIRALS / LATE TYPE GALAXIES

To describe the brightness profile of a spiral (or spiral-barred) 
galaxy, we need to consider the two components : the disc and 
the bulge. 

A spiral seen face-on has a light profile given by :

L C = L" exp −
C
â

The overall distribution of mass in the disc is given by :

2 C, ( = 2" exp −
C
â
exp −

(
ℎ

Scale height : the height at 
which the density falls of by a 
factor e



Properties of Galaxies in the 
Local Universe

THE GALAXY LUMINOSITY FUNCTION

The galaxy Luminosity Function is the distribution in 
luminosity of the number density of galaxies at a given 
redshift. Its form has been described empirically by 
Schechter (1976) : 

Φ
¶
¶∗

3
¶
¶∗

= Φ∗ ¶
¶∗

t

exp −
¶
¶∗

3
¶
¶∗

which can be written as :
Φ º 3º = Φ∗ºt!1U3º

Where Φ∗ and ¶∗ are the density and luminosity where 
there is a change in the shape of the function, and p is 
the slope at the faint-end. 



Properties of Galaxies in the 
Local Universe

THE GALAXY LUMINOSITY FUNCTION

To measure the LF, we need a photometric survey with a 
redshift for each detected galaxy. 

One can naively say that the number of galaxies per given 
luminosity is the number density of galaxies Φ(¶). This is 
not the case because of the Malmquist bias (preferential 
detection of intrinsically bright galaxies).

We need to correct this effect to obtain an 
unbiased determination of the LF. 



Properties of Galaxies in the 
Local Universe

THE GALAXY LUMINOSITY FUNCTION

The V/Vmax method (also named the volume luminosity 
test) is the most successful method to determine the LF. 

Taking into account the luminosity limit of the survey 
¶o@= we define :
T: volume within which each source is distributed
T=:U : maximum volume within which each source could 
still be detected 



Properties of Galaxies in the 
Local Universe

STELLAR POPULATION

Stars are mainly characterised by their luminosity and 
surface temperature. They are classified according to 
their spectral type : 

With decreasing T : O, B, A, F, G, K, M 

A diagram showing the luminosity of a star as a function 
of its temperature is a Hertzsprung-Russel (HR) diagram.

Most of the stars are along the line called the Main 
Sequence where they are fusing hydrogen in their core. 

The Giant branch is when the stars are fusing the Helium 
in their core. 



Properties of Galaxies in the 
Local Universe

STELLAR POPULATION

We can identify a gap in the HR diagram : that is the 
place where we can find variable stars (such as RR Lyrae
or Cepheid). 

Cepheids are evolved variable stars (helium burning 
stars). Their visual magnitudes vary between a ~0.01 and 
~2 mag, with a period of a few days to a few weeks. 

The longer the period of their variability, the brighter 
their intrinsic luminosity

If we can measure the period of a 
Cepheid, we can deduce its intrinsic 
luminosity and therefore its distance. 

3[, = 10
".' u (16 -$

=
u 1t vw_ j$xL



Properties of Galaxies in the 
Local Universe
The HR diagram ca be used to measure how far
away a star cluster/galaxy is from Earth.

This can be done by comparing the apparent
magnitudes of a star clusters with distance
unknown, with the absolute magnitude of stars with
known distance.

The observed group is then shifted in the vertical
direction until it reaches the main sequence.

The different in magnitude (m-M) is a direct
measure for the distance



Properties of Galaxies in the 
Local Universe
Stellar luminosity scales approximately as

¶ ∝ Æt

with p ∼ 3 for stars with Æ < 0.5 Æ⊙

and p ∼ 4 for stars with Æ > 0.5 Æ⊙

The time a star can remain on the Main Sequence is
given by :

q=2 ∝
Æ
¶
∝ Æ#1t

From previous equation, we clearly see that massive
stars have shorter lifetime. Therefore, the most
massive stars are excellent tracers of recent star
formation. According to the HR diagram the most
massive stars are O and B.



Properties of Galaxies in the 
Local Universe

The number of newly formed star with
masses in the range Æ → Æ + 3Æ is
given by the Initial Mass Function
(IMF).

The commonly used IMF is the
Salpeter IMF which has the shape of a
power-law :

3…
3Æ

∝ Æy

for a standard Salpeter IMF Q = −2.35

The mass budget is dominated by the low-mass stars.  But according to the relation between 
Luminosity and Mass ¶ ∝ Æt, the most massive stars dominate the luminosity budget. 

Typo in the handout 



Properties of Galaxies in the 
Local Universe



Summary of Friday’s lecture

¶ ∝ Æt
3…
3Æ

∝ Æy

Initial Mass Function



Cloud fragmentation
In chapter 3, we saw that for a standard cloud of hydrogen, 
the Jeans Mass ∼ 1 Æ⊙. This means that any more massive 
cloud (exceeding the Jeans Mass) is unstable. 

Why do we not produce a few very massive stars 
from the collapse of a giant molecular cloud ?

FRAGMENTATION

ø ∼  ø⊙



Cloud fragmentation
We consider a homogeneous spherical cloud of gas 
of density 2", radius ≠, and mass Æ". We assume 
no internal pressure throughout the collapse. 

Gas molecules initially at a radius C" will have a 
mass of gas Æ4 within the radius, and during the 
collapse this mass remains constant.

This analysis will follow the same calculation as 
before for free-fall collapse. Then the equation of 
motion of the molecules is (Newton’s gravity) :

Ö'C
Ö6'

= −
∞Æ4

C'

Integrating by Ċ =
.4
.?

and integrating with respect 
to time gives :

1
2
Ċ' =

∞Æ
C 4-

4

=
4A
3
C"
'2"∞

C"
C
− 1

Hence : 

3C
36
= −

8A∞2C"
'

3
C"
C
− 1

#/'

The negative sign is chosen to 
indicate the collapse



Cloud fragmentation
From the previous equation, let’s determine : the 
free-fall time and the density evolution. 

We introduce the dimensionless length : 
∏ = C/C"

and the characteristic time :

6" =
3

8A∞2"

and the dimensionless time : 
q = 6/6"

Hence : 

3C
36
= −

8A∞24-(

3
C"
C
− 1

#/'

Becomes :
3∏
3q

= −
1
∏
− 1

#/'



Cloud fragmentation
We can now make the substitution : 

∏ = cos'p

Then :  
3∏
3q

= −
1
∏
− 1

#/'

becomes : 
3p
3q

=
1

2 cos' p

Separating the variables :
2 cos' p 3p = 3q

Integrating : 

p +
1
2
sin 2p = q

Remember that :
∏ = C/C"
∏ = cos' p

6" =
3

8A∞2"
q = 6/6"

The end of the collapse occurs when C → 0, then when 
∏ → 0 which means that p = A/2 :

655 =
A
2
+
1
2
sin A 6" =

A
2
6" =

3A
32∞2"

#/'

Like what we found 
at the stellar scale



Cloud fragmentation
The mass within each collapsing shell is conserved, and
since the density is initially uniform, it must remain uniform
(because the free-fall time does not depend on C").

Because of the mass conservation : 
C"
!2" = C!2 6

Or 
C
C"
= cos' p

Hence :
2 6
2"

=
C"
!

C!
=

1
cosH p

Then 

q = p +
1
2
sin 2p =

A
2
− ò

We can also say that :

C ∼ 0 ⟺ p =
A
2
− æ

Then :

q = p +
1
2
sin 2p =

A
2
− æ +

1
2
sin(A − 2æ)

Or 

sin º = º −
º!

3!
+
ºO

5!
−
ºz

7!
…

Hence  

q =
A
2
− æ −

1
2
−2æ +

8æ!

6
=
A
2
− ò

A
2
− ò =

A
2
−
8æ!

12
⟺ æ! =

3ò
2

If we know assume a time 6 close to the collapse :

q =
6
6"
=
655 − (655 − 6)

6"
because 6 → 655, then C → 0 and p → A/2.



Cloud fragmentation
At the time close to the collapse, the density could be
rewritten as :

2 6
2"

=
1

cosH(
A
2 − æ)

=
1

sinH(æ)
≈

2
3ò

'

Remember that :

q =
6
6"
=
655 − (655 − 6)

6"
=
A
2
− ò

Hence :
2 6
2"

=
26"

3 655 − 6

'

Small angle approximation
sin æ ≈ æ

Note that 2 6 /2" depends only on 655 and 
not on the initial radius C"



Cloud fragmentation
Now consider that towards the centre of the initial sphere 
the density was perturbated to have a slightly higher density, 
an overdensity such as : 2d = 2" + Õ"

The free-fall time of the overdensity is given by : 

655
d =

3A
32∞2d

#/'

=
3A
32∞

#
' 1
2d

#/'

Or, according to the binomial theorem :  

2 + Õ" 1#/' ≈
1

2"
#/' 1 −

Õ"
22"

Hence :

655
d = 655 1 −

Õ"
22"

2"

2d = 2" + Õ"

In that case the free-fall time is slightly 
shorter. 

655 =
3A

32∞2"

#/'



Cloud fragmentation
Towards the end of the collapse, this overdensity will have 
grown relative to the mean density of the cloud :

2′ 6
2 6

≈
655 − 6

655
d − 6

'

≈ 1 +
Õ"655

2" 655 − 6

Therefore, the overdensity grows as :
Õ 6
2 6

≈
Õ"655

2" 655 − 6

This becomes very large when 6 → 655

All over-densities in the cloud grow at the 
same time. No dependence on mass or 
radius

Remember that from the Jeans analysis, we obtained :

• The dispersion relation :
Ω' = â7

' E' − ES
'

• The mass associated with a perturbation :

Æ ∼
z
2

!

2 ∼
E
A

1!

2

è In the Jeans analysis, the growth of overdensity
depends on the wavevector E and hence on the mass Æ.

Conclusions : In this analysis, a small inhomogeneity in 
the pressure-free case will grow algebraically with time, 
and all perturbations grow at the same rate

èsub-clumps of different masses form stars of different 
masses at the same time

q r
q$

=
2r$

3 r// − r

"

&!!
" = &!! 1 −

S#
2F#



Cloud fragmentation
Qualitatively therefore we expect the following : 

• A cloud which is initially very large compared to the Jeans 
mass will start to undergo approximately pressure-free 
collapse.

• Many factors will break the symmetry :
• Initial shape of the cloud

• Large-scale rotation

• Small scale velocity variations (i.e. turbulence)

• Any initial inhomogeneities will grow with time and they 
all grow on similar timescales

• Eventually we expect the densest of these to become self 
gravitating in their own right



Cloud fragmentation
HOW DE WE FORM THE INITIAL MASS FUNCTION ?

Observationally, there is a good correspondence between the 
cloud-mass spectrum and the shape of the IMF. 

But how does this mass spectrum come about ?

Fukui et al. 2001

Molecular clouds

Input physics almost certainly includes :

- Turbulence-energy input drives random motions in the gas 
giving rise to a turbulent cascade. The standard result is that 
the spectrum of energy in turbulent motion satisfies : 

G E 3E ∝ E1O/!3E

- The most successful models invoke scale-free, or fractal, 
structures within the cloud

- Competitive accretion – for example, the denser cores grow 
by faster than the less dense cores by competing more 
strongly for the low-density gas

Further progress requires numerical simulations…





Cloud fragmentation
t=0 : We begin with such a gas cloud, 2.6 light-years across, and 
containing 500 times the mass of the Sun. The images measure 1 pc 
(3.2 lightyears across). 

t=38kyr : 38,000 yr: Clouds of interstellar gas are seen to be very 
turbulent with supersonic motions. 

t=76kyr : As the calculation proceeds, the turbulent motions in the 
cloud form shock waves that slowly damp the supersonic motions. 

t=152kyr : When enough energy has been lost in some regions of the 
simulation, gravity can pull the gas together to form dense "cores".

t=190kyr : The formation of stars and brown dwarfs begin in the 
dense cores 

t=209 kyr: As the stars and brown dwarfs interact with each other, 
many are ejected from the cloud.



Galactic-wide star formation
WHAT FACTORS CONTROLS STAR-FORMATION ON A 

GALACTIC SCALE ?

Some definitions first :

• ∑ : SFR per unit of volume of the galaxy

• Ψ : SFR for the whole galaxy

• Σ9pY : SFR per unit projected area of a galaxy

Intuitively, we expect the SFR to depend on the 
amount of available fuel.  

This has been demonstrated 
observationally:  the Schmidt law

Σ9pY ∝ nR

where n is the surface gas density.

For a constant disc thickness, then :
∑ ∝ 2R



Galactic-wide star formation
WHAT FACTORS CONTROLS STAR-FORMATION ON A 

GALACTIC SCALE ?

The best observational result is the Schmidt-Kennicutt
law :

Σ9pY
Æ⊙ƒC1#E#U1'

= 2.5×101*
n

Æ⊙#U1'

#.*

Line with a 
slope a=1.4

This result has been obtained by observing 97 
galaxies.

In the following, we will consider simple models to 
explain the observational S-K relation. We start our 
analysis by considering clouds which exceed the Jeans 
Mass, and then collapse. 



Galactic-wide star formation
MODEL 1 : Collisional Assembly 

Here we assume that the ISM consists of many small 
clouds, each less massive than the Jeans Mass. 

Larger clouds are constructed by collisions between 
the small clouds. 

In this simple model, the collision rate will be :
î = m'5H

Density of clouds
The RMS mean 

velocity in the disc

Cross section of the 
cloud

We also assume the collision time is long compared to 
the free-fall time of the clouds once they exceed their 
Jeans Mass.

This suggests that :
∑ ∝ 2'

which is not in agreement to the observed S-K law. 



Galactic-wide star formation
MODEL 2 : Collapse-time limited

In this model, we assume that we already have large 
clouds already in place, which exceeds the Jeans Mass 
by a large factor (e.g., Giant Molecular Clouds)

From the previous discussion, we know that these 
clouds will collapse and fragment on a free-fall time. 

In that case, the SFR will be proportional to the gas 
density divided by the collapse time scale, such as : 

∑ ∝
2
655

Remember that 655 is given by :

655 =
3A
32∞2

#/'

Therefore, we get :
∑ ∝ 2!/'

which  is close to the S-K relation :

{MNO
a⊙|4P5E[,P(

= 2.5×101*
}

a⊙[,P(

#.*



Galactic-wide star formation

There is a limit in gas mass below which star 
formation is very inefficient (Bigiel et a. 2008)

HI

H2

The star-formation depends only on 
the molecular gas and not on the 
atomic component. 

If we only consider the dense component of
the molecular gas, we have a linear relation.
The non-linearity at low-density is probably
due to the diffuse molecular gas which does
not participate to the Star Formation.



Summary of Monday’s lecture

655 =
3A

32∞2"

#/'

Only depends on 

the initial density

2 6
2"

=
26"

3 655 − 6

'

Only depends on 

the free-fall time

2"

2d = 2" + Õ"

655
d = 655 1 −

Õ"
22"

The free-fall time of the 

perturbed region is shorter 

than in its surrounding

Õ 6
2 6

≈
Õ"655

2" 655 − 6

All overdensities

grow at the same 

time, no 

dependance on 
mass or radius

fragmentation



Summary of Monday’s lecture



Summary of Monday’s lecture

Σ9pY
Æ⊙ƒC1#E#U1'

= 2.5×101*
n

Æ⊙#U1'

#.*Collisions/merging of small clouds can not explain the shape 
of the SK relation. The only way we can explain the slope of 
the SK relation is by assuming that Giant Molecular Clouds 
exist in the Universe.

There is a 

minimum gas 

mass below 

which star 
formation is 

inefficient



Simple models of gas and star-
formation evolution in galaxies

In the following, we aim to trace the evolution of 
star-formation rate in galaxies. 

We first need to make the following definitions  :

- The initial total gas mass is [&

- The mass in the gas is a function of time : Ç '

- The mass in stars is given by 0(')

- The star formation rate is given by Ψ(')

and the following assumptions : 

- Gas is returned from the stars to the ISM via 
supernovae in an instantaneous process

- The fraction of mass locked up in old stars is 4

Gas is returned to the ISM from supernovae 
at a rate : 1 − 4 Ψ. This phenomena is 
called feedback.

MODEL 1 : Closed-box 

In this model, there is no gas inflow and no gas outflow. 



Simple models of gas and star-
formation evolution in galaxies

The mass of the gas evolves as :
!Ç
!'

= −Ψ+ 1 − 4 Ψ = −4Ψ

We then get the following equation for the evolution of the gas mass :
!Ç
!'

= −4-g
MODEL 1 : Closed-box 

Amount of gas 
in new stars

The gas returned to 
the ISM by SNe

We can then assume a linear relation :
Ψ ' = -Ç(')

where - is the star formation efficiency (the mass 
of stars formed per unit gas mass)

Hence : 
!Ç
Ç
= −4-!'

Then : 
ln Ç ' ^ gu&

^ g = −4-'

Or Ç ' = 0 = [& (by definition), then :
ln Ç ' − ln[& = −4-'

Finally :
Ç ' = [&J*)vg

- can also be seen as the depletion time, i.e. the 
time needs by a star-formation rate to completely 
use the available gas :

E#MLw =
1
-
=
g
Ψ

For a galaxy in a closed-box, the gas mass decreases 
exponentially with time. 

The stellar mass : 
0 ' = [& − Ç ' = [&(1 − J*)vg)



Simple models of gas and star-
formation evolution in galaxies

Galaxies in the Universe are not in closed-box : inflows and outflows of gas characterize the life of most galaxies. 

Observing the 
atomic gas in and 
around the Milky 
Way reveals large 
gas clouds in the 
halo of our galaxy.

Similar accreting 
gas has also been 
observed in other 
galaxies.



Simple models of gas and star-
formation evolution in galaxies

Suppose now a galaxy subject to a constant gas inflow 
rate Φ, then the evolution of the gas mass becomes :

3B
36

= −pΨ +Φ

MODEL 2 : Bathtub

One can naively expect that a very large inflow rate Φ
may produce a galaxy extremely rich in gas, with a 
total mass completely dominated by the gas mass. 

è This is clearly not seen for the bulk of galaxies

The simple reason is that the Star Formation Rate is
linked to the total amount of gas through the Schmidt
–Kennicutt relation, and it acts as a “valve” that
regulates the total amount of gas in the galaxy by
transforming the excess inflowing gas into stars.

Including the star-formation rate efficiency :
3B
36

= −pòB + Φ

The gas mass increases until the point where −pòB +
Φ=0. At this point, the gas content of the galaxy is in 
equilibrium, i.e., any inflowing gas is transformed into 
stars.

The equilibrium occurs when the gas mass in the 
galaxy is : 

B =
Φ
pò



Simple models of gas and star-
formation evolution in galaxies

MODEL 2 : Bathtub

Inflow, Φ

Gas mass, B

Star-Formation rate , Ψ

In the bathtub model, the gas inflow can be seen as the
water flowing from the tap, the gas mass can be seen as the
water in the bathtub and the star formation rate is the water
flowing out of the drain.

The rate at which the water flows out of the drain is
proportional to the water pressure, hence proportional to the
amount of the water in the bathtub.

If the rate of inflowing water from the tap is increased or
decreased the level of water in the bathtub increases or
decreases to reach a new equilibrium point, where the
associated pressure makes the outflow rate again in
equilibrium with the inflow rate.

The amount of gas in a galaxy works in a similar way,
where the water pressure is replaced by the S-K relation.



Simple models of gas and star-
formation evolution in galaxies

MODEL 2 : Bathtub

Inflow, Φ

Gas mass, B

Star-Formation rate , Ψ

The gas fraction is the mass of the gas relative to the total
baryonic content (i.e., gas and stars), which is often an
indicator of evolutionary stage of a systems :

?&:2 =
Æ Bâr

Æ {âCƒçmr
=

Æ Bâr
Æ Bâr + Æ(r6âC)

=
B

B + r

At equilibrium, for a constant inflow rate, the gas mass is
constant :

B =
Φ
pò

The stellar mass keeps growing, and is given by :
r 6 = Φt − g

The gas fraction steadily decreases with time, hence making
galaxies “gas poor”. After the equilibrium has been reached :

?&:2 =
1
pò6



Simple models of gas and star-
formation evolution in galaxies

The gas fraction is also indirectly related to the stellar mass
and can be expressed as

?&:2(6) =
p + 1
pòr(6)

which highlights the relation between the stellar mass and
the gas fraction.

MODEL 2 : Bathtub

It is expected that the gas fraction should decrease with the
stellar mass, which is indeed observed in local galaxies

The gas fraction is therefore a good tracer of the galaxy
evolutionary stage, i.e., galaxies with low gas fraction are
typically more evolved than galaxies with high gas fraction.

time



Simple models of gas and star-
formation evolution in galaxies

THE EFFECT OF OUTFLOWS

One of the primary mechanisms responsible for driving
outflows is associated to SNe explosions. Radiation pressure
from the light emitted by young luminous stars is another
possible mechanism.

SNe and radiation pressure from young stars are linked to the
star formation rate, hence we can express the outflow rate Λ as a
function of the star-formation rate :

Λ = 5Ψ
where 5 is the outflow loading factor (observations give 5 ∼ 1 for
actively star-forming galaxies).

Introducing the outflows effect, the gas evolution with time
can be written as :

3B
36

= −pΨ +Φ− zΨ

Star formation Inflow Outflow 



Simple models of gas and star-
formation evolution in galaxies

THE EFFECT OF OUTFLOWS

The gas evolution with time is given by :
3B
36

= −pΨ +Φ− zΨ

Including the Schmidt-Kennicutt relation (Ψ = òB) gives :
3B
36

= −pòB + Φ − zòB

which gives an equilibrium gas mass (3B/36=0) :

B =
Φ

p + z ò

The effects of outflows is to greatly increase the effective
value of p, i.e., the amount of gas lost.

At equilibrium, the stellar mass is given by r ≈ pΨ6 = pòB6.

Therefore, at equilibrium, the gas fraction is still given by :

?&:2 ≈
1

pò6 + 1
≈

1
pò6

Independent of outflow rate

Gas fraction seems not to have an effect in explaining the
lower gas fraction in massive galaxies.

In massive galaxies, Active Galactic Nuclei can greatly
contribute to enhance the outflow rate, hence effectively
increasing the value of z, even by a factor of several, hence
contributing to greatly reduce the gas content in massive
galaxies



Metallicity evolution of galaxies
The definition of metals for astronomer is
different from the well-admitted definition
of metals in Physics : “all elements heavier
than Helium”.

The metallicity is the mass fraction of
heavy elements defined as :

• =
Æ=<?:o2

Æ?A?
≈
Æ=<?:o2

Æ&:2

We differentiate :

- Stellar metallicity : mass fraction of
metals in the stellar atmosphere

- Gas metallicity : mass fraction of metals
in the Inter Stellar Medium (ISM)

The solar metallicity is •⊙=0.014

Metals for non-astronomer

Metals for astronomer



Metallicity evolution of galaxies

We can also use the relative numeric
abundances of elements when discussing
the metallicity :

[ H/s]= log#"
~Q
~&

− log#"
~Q
~& ⊙

with an alternative notation of the numeric
abundance :

12 + logH/% = 12 + log#"
…�
…\

Metals for non-astronomer

Metals for astronomer



Metallicity evolution of galaxies
Excepts for Lithium and Beryllium, metals
are produced by stellar nucleosynthesis
and released into the ISM by SNe and
stellar winds.

The metals injected into the ISM is then
use to produce new stars.

There are two types of SNe :

• Type II (core-collapse) : stars with mass
larger than 8Æ⊙ leave the Main
Sequence in less than 30Myr, explode in
type II SNe, and enrich the ISM in p
elements (O, Ne, Mg, Si, S, Ca, …)

• Type I : stars with mass less than
8Æ⊙ take much longer to leave the MS,
they evolve as Asymptotic Giant Branch
stars (AGB) and then planetary nebulae
and enrich the ISM mostly with C and N

Planetary Nebulae

Remnant of type II SNe
SN1987 in LMC



Metallicity evolution of galaxies

Each time a star explode, it enriches the ISM in
metals. Then, the metallicity of the ISM (and
therefore of the new born stars) increases with time.

We can then expect that the first generation of stars
(pop III stars) had a smaller metallicity than stars
currently form in our Milky Way.



Metallicity evolution of galaxies
IN A CLOSED-BOX SYSTEM

This is the simplest model we can use to study the evolution of 
metallicity in a galaxy.

We recall the definitions  and assumptions we previously made :

- The initial total gas mass is [&

- The mass in the gas is a function of time : Ç '

- The mass in stars is given by 0(')

- The star formation rate is given by Ψ(')

- Gas is returned from the stars to the ISM via supernovae in an 
instantaneous process at a rate 1 − 4 Ψ

- The fraction of mass locked up in old stars is 4

Because we want to follow the evolution of metallicity, we need 
to define new variables :

- The production of new metals per mass of stars is Ö

- The rate of mass of new metals returned to the ISM via SNe is 
therefore : Ö 1 − 4 Ψ

- The total mass of metals returned to the ISM via supernovae 
is :

Ö + Ü 1 − 4 Ψ

Additional metals 
produced by SNe

Pre-existing metals, 
recycled and returned 

to the ISM by SNe



Metallicity evolution of galaxies
IN A CLOSED-BOX SYSTEM

From our previous study of the closed-box system, we have 
demonstrated that : 

!Ç
!'

= −Ψ+ 1 − 4 Ψ = −4Ψ

The evolution of mass of metals in the ISM is given by
!(ÇÜ)
!'

= Ö + Ü 1 − 4 Ψ − ZΨ = Ö 1 − 4 Ψ − 4ÜΨ

Metals produced by star 
formation

Metals “eaten” by star 
formation

Combining the previous equation gives : 

Ç
!Ü
!'

= Ö 1 − 4 Ψ = −Ö
1 − 4
4

!Ç
!'

= −,
!Ç
!'

where P is called the “yield”, with , ∼ 0.5 [⊙

Hence : 

!Ü = −,
!Ç
Ç

This equation can be integrated easily using the following 
boundary conditions :

-At ' = 0 ∶ Ü = 0 and Ç = [&

Then : 
Ü ' = −, ln

Ç
[&

which gives :

Ç ' = [& exp −
Ü
,

0 ' = [& − Ç ' = [&(1 − exp −
Ü
,
)

All these expressions are independent of the SFR,
star formation history and star formation efficiency.
They are simply a consequence of recycling the
metals in the new stellar generation

R =
S#$%&'(
S%)%

≈
S#$%&'(
S"&(



Metallicity evolution of galaxies
IN A CLOSED-BOX SYSTEM

Stars formed at a time ' < '= must have a metallicity less than 
Ü '= since they formed out of gas which was less enriched in 
the past. 

For example, the fraction of stars with metallicities les than 
0.1Ü⊙ is given by : 

0 <
Ü⊙
10

[&
= 1 − exp −

Ü⊙
10,

≈ 1 − exp −
1
5

≈ 0.2

Applying the same equation to determine the fraction of stars with Ü =
=
.
Ü⊙ gives : 

0 <
Ü⊙
3

[&
= 1 − exp −

Ü⊙
3,

≈ 1 − exp −
1
1.5

≈ 0.5

The closed-box model predicts that half of the stars should have a 
metallicity Ü = =

.
Ü⊙

But observationally, the number of old low-metallicity stars in 
the disc of the Milky Way is much smaller (<0.01)

The “G-dwarfs problem”

Our Sun is itself an old G-dwarf star with a relatively high 
metallicity.

50% predicted 
3% observed

20% predicted 
<0.1% observed

x r = U$ − y r = U$(1 − exp −
~
N
)



Metallicity evolution of galaxies
A solution to the G-dwarfs problem 

Galaxies have not evolved as “closed boxes”

Gas inflows and outflows, during galaxy evolution, 
play a major role 

Inflows are the key to solve the “G-dwarfs problem” : by providing additional gas they can prolong star 
formation, hence enabling a larger number of stars to form out of pre-enriched gas. 



Stellar orbits and spiral 
structure

We have seen that star-formation should occur in
regions of overdensities, i.e., where it is more likely
that gas clouds are compressed, perturbated and
collapse to form stars.

Observationnally, we clearly see that star formation
happens in the spiral arms of disk galaxies.



Stellar orbits and spiral 
structure

Rotation Curves in galaxy disks

Rotation of stars in a disk is probed by Doppler shift of
spectral lines such as the neutral hydrogen (HI at 21cm)
or nebular optical lines (e.g., Hp)

Observationally, we know since the 1970s that the
Rotation curves are relatively flat with radius

Assuming a spherical model, the mass within the radius C
is obtained by applying the Gauss’s theorem :

5'

C
=
∞Æ C
C'

Assuming that the velocity is independent of radius, we
get : Æ C ∝ C, and then 2 C ∝ 1/C'

But we have seen that the density
profile in the disc is given by :

2 C, ( = 2" exp −
C
â
exp −

(
ℎ

Inconsistency 

è DARK MATTER



Stellar orbits and spiral 
structure

To simplify our analysis, we assume a cylindrically symmetric
model in which the potential is given by Φ(C, () and we
examine orbits initially in the ( = 0 plane.

We make the following assumptions :

• The angular momentum per unit mass for each star is
conserved : è = C'

.Ä
.?
= Uçmr6âm6 ; where í is the

azimuthal angle

• The energy per unit mass is also conserved :

G =
1
2
3C
36

'

+
1
2
C
3í
36

'

+Φ C =
1
2
3C
36

'

+
è'

2C'
+Φ(C)

• The equation of motion in the radial direction is just :
Ö'C
Ö6'

− C
ÖΦ
36

'

= −
ÖΦ
ÖC

It is also useful to introduce the effective potential :

Φ< = Φ+
è'

2C'

Hence the radial equation of motion becomes :
Ö'C
Ö6'

= −
ÖΦ<

ÖC

In a uniform circular motion (no acceleration and r=cste)
then :

Ö'C
Ö6'

= 0

Hence :
ÖΦ<

ÖC
= 0 =

ÖΦ
ÖC

−
è'

C"
!

Given a Φ C , or equivalently a mass distribution, we can
calculate the properties of the circular stellar orbit at any C

Stellar Orbits



Stellar orbits and spiral 
structure

At a radius T, the angular velocity of the circular orbit is given by :

Ω T , =
c,

Tc =
1
T
MΦ
MT

A star when perturbed will undergo small motions about this
circular orbit.

Write º = C − C" and expand the effective potential about C":

Φ< º = Φ< C" + º
ÖΦ<

ÖC 4-
+
1
2
º'

Ö'Φ<

Ö'C
4-

+ ù º!

=0 
circular orbit

The radial equation (
8(4
8?(

= −
8Å3
84

) is then
Ö'º
Ö6'

= −
ÖΦ<

Öº
= −º

Ö'Φ<

ÖC'
4-

The previous equation has the form of the Simple
Harmonic Motion (SHM) :

Ö'º
Ö6'

= −º√'

with √ the epicyclic frequency, defined as :

√' =
Ö'Φ<

ÖC'
4-

=
Ö'Φ
ÖC'

+
3l'

r*
Ç-

or Ω C ' =
o(

4U
=

#
4
8Å
84
, then :

√' = C
ÖΩ'

ÖC
+ 4Ω'

4-

= 4Ω' 1 +
C
2Ω

ÖΩ
ÖC 4-

Similarly, we can show that for small amplitude motion out
of the plane of the disc, the star undergoes SMH with :

L, =
M,ΦÄ

Me,
\u\$,ÇuÇ$

Φ< = Φ+
è'

2C'



Stellar orbits and spiral 
structure

In general, spiral structure is complicated, but one
important physical idea is the concept of resonant orbits.

Resonant Orbits

Near circular orbits is superposition of pure circular orbit
plus radial motion.

ΔΦ

In the lab frame, after one radial oscillation of period +4 =
2A/√ the orbit will have precessed by ΔΦ ≈ Ω+4.

The orbit closes if ΔΦ = 2A

In general, the orbit will not close if ΔΦ ≠ 2A, but consider
the situation in a frame rotating at Ω[- the pattern speed, in
this system the orbit precession is :

ΔΦ[ = ΔΦ − Ω[+4



Stellar orbits and spiral 
structure

For the orbit to close after 7 radial oscillations, we require :
!2Q = Ω7+\ − ΩL7+\

Hence :
ΩL = Ω −

!
7f

Resonant Orbits

ΔΦ

Interestingly, in many systems (e.g., flat rotation curve in
disc galaxies) the form of Ω C is such that for m = 1,~ =
2,Ω[ is nearly constant across the disk, i.e., all epicyclic
orbits close at all radii.

In this case, we can arrange the phase of the orbits so that
adjacent stars in certain regions of the disk have a higher
density, and put them on the m = 1,~ = 2 perturbed orbits
: these will then be long lived



Stellar orbits and spiral 
structure

We can achieve this,
for example, if there is
an external
perturbation which
causes a rotating
potential which is
resonant with these
orbits

Resonant Orbits



Summary of Friday’s lecture

Inflow, Φ

Gas mass, B

Star-Formation rate , Ψ

3B
36

= −pΨ +Φ− zΨ

Star formation Inflow Outflow 

3B
36

= −pòB + Φ − zòB

SK relation : 
ÉÑÖ ∝ U)'0

?&:2 =
Æ Bâr

Æ Bâr + Æ(r6âC)
≈

1
pò6

At equilibrium 

Independent  of 
inflow and 

outflow rate 



Summary of Friday’s lecture

• =
Æ=<?:o2

Æ?A?
≈
Æ=<?:o2

Æ&:2

12 + logH/% = 12 + log#"
…�
…\

Abundance ratio with 
respect to hydrogen 

50% predicted 
3% observed

20% predicted 
<0.1% observed

The G-dwarfs problem 
Galaxies are not 

evolving like  
closed boxes : 
outflows and 

inflows are taking 
place !



Summary of Friday’s lecture

Flat rotation curves because of dark matter 

Ö'º
Ö6'

= −º√'

5' =
Ö'ΦJ

Ö('
4g4-,%g%-

Star undergoes Simple 
Harmonic Motion in a galaxy

Stellar orbits in galaxy could be
resonant to a rotating potential
caused by an external perturbation



An interesting ”JWST-discovery” 
from last week !



We are not interested in the vertical structure in the disc,
and therefore we project these equations into a 2D form by
integrating the pressure in the z-direction and assuming all
of the mass is concentrated in a plane.

We also assume that there is not dependence of the
velocities on z, then this integration gives identical
equations except that the density and pressure are replaced
by :

2 C, Q, (, 6 = n C, Q, 6 Õ (

And

< = W# 3(

Stellar orbits and spiral 
structure

Stability of a rotating disk – spiral density waves

One manifestation of unstable discs are spiral density
waves.

The Euler’s equations for an ideal fluid in cylindrical
coordinate system are :

-radial equation :

2
Ö54
Ö6

+ 254
Ö54
ÖC

+ 2
5y
C
Ö54
ÖQ

−
2
C
5y
' = −2

Öí&
ÖC

−
Ö2
ÖC

- Q equation :

2
Ö5y
Ö6

+ 254
Ö5y
ÖC

+ 2
5y
C
Ö5y
ÖQ

+
2
C
5y 54 = −2

1
C

Öí&
ÖQ

−
1
C
Ö2
ÖQ

And the equation of continuity :
Ö2
Ö6
+
1
C
Ö
ÖC

2C54 +
1
C
Ö
ÖQ

25y = 0
Disc surface density

NOT EXAMINABLE

q
6à⃗
6r

+ q(à â ∇)à⃗ = −∇N − q∇Φ)

!F
!&
+ ∇. FD = 0



Stellar orbits and spiral 
structure

Stability of a rotating disk – spiral density waves

The unperturbed solution is an axially symmetric rotating
mass distribution, n"(C) with 5" C, Q = (0, CΩ C ) and an
unperturbed potential í&"

Adding small perturbations which are all functions of C, Q
and 6 :

5 = S, 5 + CΩ
n = n" C + nd C, Q, 6
í& = í&" + í&d C, Q, (, 6

where n"(C) and n′(C, Q, 6) satisfy the Poisson’s equation :
∇'í&" = 4A∞n"Õ (

∇'í&d = 4A∞nd C, Q, 6 Õ(()

Perturbation Analysis

< is a force per unit length and is the equivalent of a
pressure in 2D. We assume an isothermal-like equation of
state and write :

< = â"
'n

Stellar velocity 

dispersion
Disc surface density

If we keep only terms to first order in small quantities :

- Radial S :
ÖS
Ö6
+ Ω

ÖS
ÖQ

− 25Ω = −
â"
'

n"

Önd

ÖC
−
Öí&d

ÖC
- Angular 5

Ö5
Ö6
+ Ω

Ö5
ÖQ

−
√'S
2Ω

= −
â"
'

Cn"

Önd

ÖQ
−
1
C

Öí&d

ÖQ

- Continuity :
Önd

Ö6
+
1
C
Ö
ÖC

Cn"S +
n"
C
Ö5
ÖQ

+ Ω
Önd

ÖQ
= 0

Epicyclic frequency



Stellar orbits and spiral 
structure

Stability of a rotating disk – spiral density waves

We now look for spiral-like solutions writing :

nd = “n exp é Ω6 − mQ + Ψ C

with similar expression for S, 5 and í&d

Perturbation Analysis

Basic properties of solutions :

The maximum in the density occurs for Ω6 − mQ + Ψ C =
0. To understand the implications of this form, consider 6 =
0, then the locus of the maximum density has :

• mQ = Ψ(C) which is a spiral pattern which represents an
n-armed spiral

• The pattern makes an angle to the Q direction, the pitch

angle, tan p =
R

4JVWX
=

R
E4

where we define E =
.É
.4

The radial distance between maxima is given by :

• Ψ C + z − Ψ C = 2Am

• For z ≪ C ∶ Ψ C + z ≈ Ψ C + Ez and z =
'+R
E

7 =
!Ψ
!O 7 is the wavenumber of 

the radial spiral wave

The spiral pattern rigidly rotates in time at the angular
pattern speed :

Ω[ =
3Q
36

=
Ω
m

The pitch angle is the angle between the 

tangents to a spiral arm and a perfect circle



Stellar orbits and spiral 
structure

Stability of a rotating disk – spiral density waves

The spiral-like solution make Euler’s and Continuity equation
simple, however solving Poisson’s equation is more difficult.

The solution can be found is what is called the tight-winding
approximation when

R
E4
≪ 1

Perturbation Analysis

Re-arranging :

m' Ω[ − Ω
'
= Ω − mΩ ' = √' + E'â"

' − 2A∞ E n"

In the special case of rotating axisymmetric disk (n=0):
Ω' = √' + E'â"

' − 2A∞ E n"The resulting dispersion relation is :

√' − m' Ω[ − Ω
'
+ E'â"

' = 2A∞ E n"

Epicyclic frequency Pattern 

speed

wavenumber

Velocity 

dispersion

Surface 

density

rotation Velocity 

dispersion

gravity



Stellar orbits and spiral 
structure

Stability of a rotating disk – spiral density waves

The solution dispersion can be re-written as :
Ω'

√'
= 1 +

E'â"
'

√'
−
2A∞ E n"

√'

Or
Ω'

√'
= 1 +

É'

4
E'

E7
' −

E
E7

where :

• É is the disc stability parameter :

É =
2E7â"
√

=
√â"
A∞n"

• E7 is the Toomre wave number :

E7 =
√'

2A∞n"

Perturbation Analysis The division between stable and unstable solutions occurs
when Ω' = 0 or :

E
E7

=
2
É'

1 ± 1 − É'
#
'

• This only has a solution for |E| when É < 1. In this case
there are regions where Ω' < 0 , hence spiral
perturbations grow exponentially, yielding the collapse of
clouds, likely resulting into star formation.

• When É > 1 → Ω' > 0 ∀ E and the disc is always
stable. The latter condition can be expressed in terms of a
minimum velocity dispersion that makes the disk stable :

É =
√â"
A∞n"

> 1 → â" ≥ â",=@R =
A∞n"
√

Or that the maximum surface density for stability is :

n" < n",=:U =
√â"
A∞



Stellar orbits and spiral 
structure

The higher gas density on the spiral waves can make 
n" > n",=:U

É < 1

Gravitational instability 

Star Formation

É =
2E7â"
√

=
√â"
A∞n"



Stellar orbits and spiral 
structure

We have seen previously in the Schmidt-Kennicutt
relation that there is a surface gas density threshold for
star formation.

This threshold can be explained in terms of gas surface
density below the critical surface density in the outer
parts of disks, making the gas stable and therefore
avoiding star formation.

É =
2E7â"
√

=
√â"
A∞n"



Stellar orbits and spiral 
structure

Lindblad Resonances

The full dispersion relation is given by :

m' Ω[ − Ω
'
= Ω − mΩ ' = √' + E'â"

' − 2A∞ E n"

and can be re-written as :

E'â"
' −

E
E7

√' + √' − m' Ω[ − Ω
'
= 0

which is now a quadratic equation in |k|

Assuming â" = â",=@R, to have a real (and positive) solution
for |k| (wavenumber of spiral waves) it is necessary that :

1 ±
m
√
Ω[ − Ω ≥ 0

Therefore :

Ω −
√
m
≤ Ω[ ≤ Ω +

√
m

Then :

• Ω[ = Ω −
Ñ
R

: inner Lindblad resonance

• Ω[ = Ω +
Ñ
R

: outer Lindblad resonance

• Ω[ = Ω is called corotation



Stellar orbits and spiral 
structure

Lindblad Resonances

• Ω[ = Ω −
Ñ
R

: inner Lindblad resonance

• Ω[ = Ω +
Ñ
R

: outer Lindblad resonance

• Ω[ = Ω is called corotation

We only have spiral density wave solution between the
inner and outer Lindblad resonance (where we have spiral
arms in a galaxy)



Feedback processes in 
star formation
Chapter 7



In the local Universe, only 4% of the baryons have
been converted into stars.

But gas cooling and gravitational collapse theories
predict that over the entire life of the Universe 80%
of the baryons should have been converted into
stars.

Some mechanisms must have been responsible for
suppressing the formation of stars and/or removing
gas from galaxies

Negative Feedback



Stellar Winds

Mass loss from massive and evolved stars occurs in
the form of stellar wind.

The properties of the stellar wind depend on the
star :

• Post-main sequence stars nearing the ends of
their lives often eject large quantities of mass in
massive (Æ̇ > 101!Æ⊙ƒC1# ) but relatively slow
winds (5 < 10E~ r1#)



Stellar Winds
Winds from Massive O and B stars

- lower mass loss rates (Æ̇ < 101HÆ⊙ƒC1# ) but very high
velocity (5 > 1000 − 2000 E~ r1#).

- Winds are driven by radiation pressure on the resonance 
absorption lines of heavy elements such as carbon and 
nitrogen.

- These high-energy stellar winds provide significant 
feedback

- The winds drive shocks into the ISM – two-shock 
structure :

- The freely-expanding stellar wind hits an inner termination 
shock, where its kinetic energy is thermalized, producing 
10lK, X-ray emitting plasma.

- The hot, high-pressure, shocked wind expands, driving a 
shock into the surrounding interstellar gas

- If the surrounding stellar gas is dense enough, the swept-
up gas radiatively cools far faster than the hot interior, 
forming a thin dense shell around the hot shocked wind.



Stellar Winds
Winds from Massive O and B stars

About 20% of the energy of the stellar wind is converted 
into kinetic energy of the surrounding ISM.

Additional feedback from O and B stars

These are massive stars, with high luminosities and high 
temperature, producing a large number of ionising photons :

• Photoionisation, and hence heating of the ISM 

• Strong radiation pressure onto the dust in the ISM clouds 
can drive powerful winds, which eject gas out of the galaxy



SuperNovae
Stellar winds represent a minor fraction of feedback
processes in galaxies which are actively producing very
massive stars.

Stars with mass Æ > 8Æ⊙ will end their lives as
supernovae which have a dramatic effect on the galaxy.

The total energy input to the ISM from each SNe explosion
is of order 10*! − 10**J.

Moreover, SNe also release into the SNe processed stellar
material, and are therefore responsible for an increase of
metallicity.

Typically, one solar mass of stellar material is ejected back
to the ISM

The effect of SNe explosions is both to heat the ISM
through shocks and to drive powerful winds .



SuperNovae

VLA image showing SNe remnants in the Milky Way



Starburst and ultraluminous
galaxies

In a starburst the measured rate of star formation is so 
large that the available gaseous fuel would be used in much 
less than the Hubble time (often within ≈ 10Ö yr).

Ultraluminous Infrared Galaxies (ULIRGs) are the most 
extreme cases of starbursts: they have far infrared 
luminosities greater than 10#'¶⊙ and inferred star 
formation rates of order 50 – 1000 Æ⊙ ƒC1#

The Star Formation is concentrated in a nuclear region (a 
nuclear starburst). The associated SNe drive a galactic-scale 
outflow of hot gas which is clearly visible in the X-Ray, in the 
ionised gas, but also in molecular gas. 



Stars 

X-rays, very hot gas

%p (warm ionized gas)
SNe driven wind



Global stellar feedback

Stellar winds, photoionization and supernova explosions 
have a cumulative effect of suppressing star formation, i.e. 
have a negative feedback effect onto star formation.

Heating by shocks and photoionization makes the collapse 
and fragmentation of molecular clouds more difficult 
(because efficient cooling requires radiation from molecules 
and dust which are often destroyed in these environments)

Galactic winds (mostly produced by the cumulative effect of 
SN explosions and radiation from young O-B stars) expel gas 
out of the galaxy, hence remove fuel available for star 
formation

The latter mechanism is most important in low mass 
galaxies, for which the gravitational potential well is not 
deep enough to retain the gas.



Feedback from Supermassive 
Accreting Black Holes

Stellar black holes result from the collapse of massive stars : 
result from the collapse of a star whose mass , after the 
mass loss during its evolution is larger than 3 − 4 Æ⊙
(which can result from a progenitor MS star of Æ > 8Æ⊙

The most massive stellar black holes have masses  a few 
/several ten Æ⊙(see LIGO results)

Collapse of very massive primordial (pop III) stars are 
expected to generate much more massive black holes up to 
a few ∼ 100Æ⊙ (both because the progenitors are much 
more massive and because the low metallicity greatly 
reduces the mass loss during their evolution).

Supermassive black holes are in galactic nuclei and have 
masses Æ > 10OÆ⊙. They must have originated from 
accretion or merging of smaller black holes. 



Feedback from Supermassive 
Accreting Black Holes

Do we have observational probes of the presence of a 
supermassive black hole in the Milky Way ?

The luminosity in the Milky Way seems brighter at the 
galactic center. 

Galactic center

Galactic center



Feedback from Supermassive 
Accreting Black Holes



Feedback from Supermassive 
Accreting Black Holes

The stars are orbiting around an object 
with a mass of 2×10HÆ⊙with a size 
≠ < 125 HÇ

leading to a density of 5×10#OÆ⊙#U1!

Supermassive black hole



Feedback from Supermassive 
Accreting Black Holes

Do we have observational probes of the presence of  
supermassive black holes in other galaxies ?

First picture of a supermassive black hole in M87
Æ(\ = 6.5×10ZÆ⊙

Supermassive Black Holes are present in the nuclei of most
galaxies, and their masses are found to be proportional to
the mass of the stellar spheroid (bulge or whole galaxy in the
case of an elliptical galaxy) in a ratio of Æ(\ ∼ 101!Æ2[I



Feedback from Supermassive 
Accreting Black Holes

Accretion onto supermassive black hole

Because of angular momentum conservation gas accreting
onto a black hole forms accretion disc.

Viscosity allows elements of gas to convert gravitational 
energy into thermal energy
à gas particles moves towards inner orbits within the disc

Thermal energy heats the disc to temperatures in excess of 
10OK

Strong UV thermal (black body like) radiation

Ionisation of the circumnuclear medium 
à strong nebular emission line 



Feedback from Supermassive 
Accreting Black Holes

The resulting energy production can be so powerful to
outshine the light from all stars in the host galaxy
à Quasars !

More generally , nuclear phenomena associated with 
Supermassive Black Hole accretion are called Active Galactic 
Nuclei (AGN)

Typical quasars spectrum, showing prominent nebular lines emitted by 
the circumnuclear gas photoionised by the UV radiation emitted by the 
accretion disc. 



Deadline to answer the 
survey (13 questions) 

12th March 



Summary of Friday’s lecture

• Ω[ = Ω −
Ñ
R

: inner Lindblad resonance

• Ω[ = Ω +
Ñ
R

: outer Lindblad resonance

• Ω[ = Ω is the corotation



Summary of Friday’s lecture

- 4% of the baryons are in stars.

- Whereas 80% should have been in stars

AN ISSUE WITH OUR CURRENT MODEL

Negative Feedback

Kinetic energy is converted into heat, and therefore
suppress the star-formation…



Summary of Friday’s lecture

ACCRETING BY A BLACK HOLE



Feedback from Supermassive 
Accreting Black Holes

The Eddington Limit

To have accretion, the gravitational force must be larger 
than the radiation pressure. 

The radiation pressure is dominated by Thomson scattering 
of photons on electrons 

Gravitational pull on the gas dominated by protons 

Therefore, the condition for accretion is :
¶

4AC'
n<
U
<
∞~[Æ(\

C'

L
øÜá

gravita
tio

n

Radiatio
n 

pressu
re

Then the condition for accretion is given by : 

◊ < ◊àââ =
ijkÿŸä

cã
øÜá

Adding some numerical values gives :

¶B.. ≈ 3×10*
Æ(\

Æ⊙
¶⊙

which could be inverted to give the minimum black hole 
mass associated with an accretion luminosity :

Æ(\ > 3×101O
¶
¶⊙

Æ⊙



Feedback from Supermassive 
Accreting Black Holes

Mass to energy efficiency 

First, let’s compute the efficiency for nuclear fusion reaction 
in stellar interiors :

p-p chain inside the Sun i å⁄ → ç⁄€ + ‹› + ‹]ã

Initial mass : 4×~[=4x1.0078 amu=4.0312 amu 
Final mass : ~\<=4.0026 amu 
Mass converted into energy : Δ~=0.0286 amu

Atomic mass unit 

≈ 1.66×10%&'kg

Efficiency of Mass to Energy conversion :

òR3, =
Δ~
4~[

= 0.007 = 0.7%

Nuclear reaction inside stars are not very efficient in 
converting mass into energy 



Feedback from Supermassive 
Accreting Black Holes

Mass to energy efficiency 

Now consider an element of mass 3~ in the accretion disc 
moving from orbit with radius C + 3C to orbit with radius C.

According to the Virial theorem, half of the variation of 
gravitational potential energy must be radiated away :

3G4:. = −
1
2
∞Æ3~
C + 3C

− −
1
2
∞Æ3~
C

where Æ is the mass of the central black hole. 

The resulting luminosity is therefore :

3¶ =
3G4:.
36

=
1
2
∞Æ

3Æ
36

1
C
−

1
C + 3C

=
1
2
∞Æ̇Æ

3C
C'

Integrating : 

¶ = W
YY/0

YKZ
3¶ =

1
2
∞ÆÆ̇

1
≠@R

−
1

≠A3?
≈
1
2
∞ÆÆ̇
≠@R

Accretion rate

The efficiency of conversion of matter into energy is given 
by : 

¶ = òÆ̇U'

with 

ò =
∞Æ

2U'≠@R

From general relativity, for a non-rotating black hole, the 
innermost stable orbit is 

≠@R = 3≠9,I =
6∞Æ
U'

Therefore ò ∼
#
#'
≈ 0.1 ⇒ 10%

Much larger than efficiency of nuclear reaction



Feedback from Supermassive 
Accreting Black Holes

ò ∼
1
12

≈ 0.1 ⇒ 10%

This is why BH accretion from a “tiny” region can outshine e 
stellar light of the whole galaxy.

Then, a black hole of mass Æ(\ in the process of accreting 
matter must have radiated an amount of energy : 

G(\ = 0.1 Æ(\U'

Gravitational binding energy of a bulge or spheroidal galaxy 
of mass Æ&:o is given by :

G&:o ∼ Æ&:on'

Stellar velocity dispersion 

(typically 400km/s)

Since Æ(\ ∼ 101!Æ2[I, it follows that :
G(\
G&:o

= 101*
U
n

'

Then : 
G(\
G&:o

> 80

Much larger than efficiency of nuclear reaction

The energy produced by the growth of the black hole 
exceeds the binding energy of the galaxy by a large 
factor. In principle, black hole accretion seriously harm 
its host galaxy.



Feedback from Supermassive 
Accreting Black Holes

AGN can provide powerful feedback onto the host galaxy and surrounding 
medium in two forms : 

- when it’s radiating at Quasar-like luminosities, radiation pressure can 
produce a powerful nuclear wind, which shock the ISM in the host galaxy 
à heating and outlows expels the gas out of the galaxy. Detailed 
calculations show that powerful quasars can completely clean a galaxy out 
of their ISM

- when the accreting black hole produces powerful radio-jet then the 
energy injected into the intergalactic and intracluster medium keeps such 
medium hot, preventing it to cool and feed the central galaxy with new gas

Such heating of the gas in the halo, preventing it to cool, results into 
“starvation” of the galaxy.



Feedback from Supermassive 
Accreting Black Holes

Which is the dominant effect ?

Answering this question depends on the mass 
of the galaxy



Galaxies interaction and 
triggering star formation
Chapter 8



The most luminous galaxies in
the Universe (ULIRGs) and most
powerful AGN always show
highly distorted morphologies
indicative of strong galaxies
interactions or advanced
galaxies merging.



Collisions between stellar 
system

Stellar collisional cross section and relaxation time

We start by estimating the collision cross section for
strong gravitation interactions as follows :
• We identify a pair-wise collision as one in which

the star is significantly deflected
• This will occur if :

1
2
~5' ∼

∞~'

C
which gives the scattering radius :

C2 ∼
2∞~
5'

• The effective cross section is therefore defined as :

AC2' ∼ A
2∞~
5'

'

:

:

;



Collisions between stellar 
system

Stellar collisional cross section and relaxation time

Note :

- The mean free path for strong collision is z =
#
R}

- The collision time is 62 =
é
m

or

62 =
m'

*+`(=(R
= 4×10#'ƒC

m
#" E=/2

! =
a⊙

1' R
#[,P'

1#

:

:

;

Much longer than Hubble time èstrong gravitational 
collisions do not occur 

W ∼ ?
2RA
D&

&



Collisions between stellar 
system

Stellar collisional cross section and relaxation time

Now we consider interactions which give rise to small
interaction, e.g., a star which is almost undeflected.

In this configuration the gravitational force is given by :

I =
∞~Æ
3'

=
∞~Æ

{' + 5'6'

The net force over the interaction is perpendicular to

the direction of travel (Iè = I sin Q = I
>
.

) and for an

impact parameter {, we have :

Iè =
∞~Æ{

{' + 5'6' !/'

:

<

;

=

>′ = =×A

Then, according to the Newton’s second law of motion :

I = ~
35
36

Then

Iè =
∞~Æ{

{' + 5'6' !/' = ~
35è
36



Collisions between stellar 
system

Stellar collisional cross section and relaxation time

Integrating over the interaction gives :

Δ5è =
1
Æ
W
1;

$;
Iè36 =

2∞~
{5

The momentum is conserved by the fact that the
second star (here assumed stationary) must have a Δ5è
in the opposite sense.

As the star undergoes many small deflections, we may
assume they are in random directions giving :

< Δ5è >= 0

Integrating over all encounters :
- The number of collisions with { → { + 3{ is :

3… = m × 56 × 2A{3{

Density of stars

Distance travels 

by a star in time t

Area of the 

annulus between 

impact parameter 

b and b+db

Hence :

< Δ5è
' >= W

>[KZ

>[\] 2∞~
{5

'

m562A{3{

=
8A∞'~'m6

5
ln

{=:U
{=@R

Ñ1 =
TåUç

ç" + à"r" ,/" = å
6à1
6r



Collisions between stellar 
system

Stellar collisional cross section and relaxation time

Defining :

ln Λ = ln
{=:U
{=@R

After a long enough time, the star’s perpendicular
speed will (on average) grow to equal its original speed.
Define this as the relaxation time - time required for
the star to lose all memory of its initial orbit.

Set :

5' =< Δ5è
' >=

8A∞'~'m6
5

ln Λ

The relaxation time is therefore given by :

64 =
5!

8A∞'~'m lnΛ

Remember that the collision time is defined by :

62 =
5!

4A∞'~'m

Hence the relaxation time is :

64 =
62

2 ln Λ

Frequent distant interactions are much effective at 
changing  the orbit that rare close encounters



Collisions in stellar systems

We can quantify the degree to which stars interact using the
collisional relaxation time

64 =
62

2 ln Λ

We first need to estimate :

ln Λ = ln
{=:U
{=@R

For an isolated system of … stars, and size ≠, we can estimate :
- {=:U ∼ ≠

- {=@R ∼ C2 for consistency (C2 ∼
'`=
m(

)

From the virial theorem :

2×
1
2
…~5' =

∞ …~ '

≠
which gives :

5'≠ = ∞…~

Then :

Λ =
{=:U
{=@R

=
≠
C2
= ≠

5'

∞~
=
1
2
…

The typical time for a star to cross the system is defined as
the crossing time :

6, ≈
≠
5

Scattering radius



Collisions in stellar systems

The density of stars per unit volume is given by :

m =
…

4
3A≠

!

Then :

64
6,
=
5
≠

5!
4
3A≠

!

8A∞'~'… lnΛ
=

…

6 ln
…
2

For a typical galaxies with … ∼ 10##stars, the crossing time is
6, = 10z − 10Ö yr and the relaxation time 64 ∼ 10Ö6, which is
much longer than the Hubble time.

Similarly for a globular cluster, we find that 64 ∼ 10#"yr

Most of the stars systems are collisionless.
The Sun is a good example !

6, ≈
≠
5

64 =
62

2 ln Λ
62 =

5!

4A∞'~'m
Λ =

1
2
…

5'≠ = ∞…~



Collisions between stellar 
system

Dynamical Friction

The dynamical friction is loss of momentum and kinetic
energy of moving bodies through gravitational
interactions with surrounding matter in space.

The total change in kinetic energy of the system due to this
change in perpendicular velocity is :

ΔGE,è =
Æ
2

2∞~
{5

'

+
~
2

2∞Æ
{5

'

=
2∞'~Æ Æ +~

{'5'
Recall the result we obtained for the change in velocity
perpendicular to nearly undeflected path of a particle of
mass Æ as it passes a mass of ~ :

Δ5è =
2∞~
{5

By conservation of momentum, the particles of mass ~
should also suffer a change in perpendicular velocity of :

Δ5è =
2∞Æ
{5

This energy can only come from the forward motion of Æ, i.e.

ΔGE,è +
a
'
Δ5∥

' = 0, but :

1
2
Δ 5∥

' = 5∥Δ5∥ ≈ 5 Δ5∥
Hence :

−Δ5∥ ≈
ΔGE,è
Æ5∥

=
2∞'~ Æ +~

{'5!



Collisions between stellar 
system

Dynamical Friction

Finally, we again integrate over all impact parameters
and obtain :

−
35
36

= W
>[KZ

>[\]
m5

2∞'~ Æ +~
{'5!

2A{3{

=
4A∞' Æ +~ 2

5'
ln Λ

We can now apply this model to the interaction of two
galaxies :
- Take Æ the mass of an entire galaxy
- 2 = m~ as the density within the interacting galaxy

The relaxation time :

64 =
5
5̇
=

5!

4A∞'Æ2 lnΛ

This will be the timescale on which dynamical friction acts to
dissipate the bulk kinetic energy of the interacting systems
and allow the galaxies to merge.



Interacting galaxies
Many galaxies
including our own
are interacting
gravitationally.

The Milky Way is
interacting with
several low mass
systems including
the LMC and the
SMC.

In many cases, the
effects of these
interactions are
relatively small.



Interacting galaxies

M51 is probably the best example
showing how interaction with smaller
mass companion could influence the
shape of the main galaxy.

The well defined arms in M51 are the
consequence of the interaction with its
companion on the right.



Interacting galaxies

LEDA 62867 and NGC 6786 are two
interacting spiral galaxies, with well
defined arms.

Simulations of this system predict that
it will lead to a merger in few billion
years.



Interacting galaxies

Arp 256 is another interacting system,
for which Hubble images show blue
knots of star formation which have
been triggered by the interaction.

Note also the characteristic tidal tails
on the left, which are a signature of a
strong gravitational interaction.



Interacting galaxies
At an advanced stage of merging, intense star

formation regions appears as long threadlike

structure located between the main galaxy cores.

Note the presence of two tidal tails at nearly right

angles : suggesting this galaxy is the remnant of

the merger of two gas-rich galaxies



Interacting galaxies



Interacting galaxies
Despite the various morphologies observed in the Universe, the
physics of these processes seems to be relatively simple,
dominated by pure gravitation interactions.

We can successfully model galaxies in this context as being
composed just of colisionless massive particles (stars or dark
matter).

We can apply our analysis of dynamical friction to interacting
galaxies. The relaxation time is given by :

64 =
5
5̇
=

5!

4A∞'Æ2 lnΛ
To simplify the analysis, we assume ln Λ ∼ 1, and take similar
values to those used in simulations :
- 5 ∼ 200E~/r
- Æ ∼ 10#"Æ⊙
- 2 ∼ 10ÖÆ⊙ E#U1!

é2 ∼ ê×íì3îï , consistent with the simulation, where the time between 
the first overlap of the discs and the completion of merger is ∼ í×íì4yr.



Summary of Monday’s lecture

:

:

;

:

<

;

=

>′ = =×A

COLLISION BETWEEN STELLAR SYSTEMS

STRONG INTERACTIONS SMALL INTERACTIONS

62 =
5!

4A∞'~'m

≈ à×âäíñyr : much longer than the Hubble time

è Most stellar systems are collisionless. 

64 =
62

2 ln Λ

è Distant interactions are more 
effective to change stellar orbits 



Summary of Monday’s lecture

64
6,
=

…

6 ln
…
2

COLLISION BETWEEN STELLAR SYSTEMS

For a typical galaxies 64 ∼ 10Ö6, : much longer than the Hubble
time.

Most of the stars systems are collisionless.
The Sun is a good example !



Summary of Monday’s lecture
DYNAMICAL FRICTION

The dynamical friction (also called the Chandrasekhar friction), is
loss of momentum and kinetic energy of moving bodies through
gravitational interactions with surrounding matter in space.

64 =
5
5̇
=

5!

4A∞'Æ2 lnΛ

Timescale on which dynamical friction acts to dissipate the 
bulk kinetic energy of the interacting systems and allow 
the galaxies to merge.



Interacting galaxies
The simulation on the right includes a simple model for star formation
which is determined by cloud build-up as well as following the gas in
the galaxy.

The system is perturbed by the passage of a satellite galaxy, but this
interaction will not start a merging process

The conclusions are the following :
- Spiral density waves are induced with a very clear two armed spiral
- Shocks and cloud-collisions dissipate the kinetic energy of the

cloud and gas accumulates on the inner Lindblad resonance
- The high-gas density leads to a burst of star formation
- After a further period of time, the gas dissipates more kinetic

energy and accumulates in the nucleus of the galaxy giving rise to a
second burst of star formation

- Fraction of the gas accumulated in the nuclear region can accrete
onto the nuclear supermassive black hole.



ULIRGs as merging systems

ULIRGs are the best examples of merging system : tidal
interactions and merging after the circular motion of clouds
causing cloud-cloud collisions resulting into loss of angular
momentum, which allows clouds to flow towards the center
of the galaxy to feed star formation in the central region,
and often black hole accretion.

Indeed, we observe that, in ULIRGs, star formation is
generally concentrated within few hundred parsecs and that
they host AGN.



Nuclear fueling through stellar 
bars

The formation of a stellar bar (often triggered by mild galaxy
interaction) could also lead to increase the star formation in
the galaxy :
- The bar is a very strong non-linear perturbation which

can exist within the inner Lindblad resonance
- Gas on circular orbits encountering the bar at supersonic

velocities is shocked
- Kinetic energy is dissipated and the gas accumulates in

the bar
- Orbits in the bar are highly elongated bringing gas and

stars to the nucleus.



Gravitational instabilities 
in the cosmological context
Chapter 9



Starting point
For the following analysis, we need to assume :

- an expanding Universe with the following cosmological
field equations :

≠̈
≠
+
4A∞2
3

1 + ò −
Λ
3
= 0

≠̇
≠

'

−
8A∞2
3

−
Λ
3
= −

EU'

≠'

- the so-called ·CDM cosmology :
- a flat geometry : ΩP + Ω= = 1
- ΩP ∼ 0.7, Ω= ∼ 0.3 and Ω> ∼ 0.044
- the seeds of structure are quantum fluctuations
which are amplified by inflation.

DEFINITIONS TO REMEMBER 

% =
≠̇
≠

ΩP =
Λ
3%'

Ω= =
2

3%'/8A∞

1 − Ω= − ΩP = −
EU'

≠'%'

Hubble constant

Dark Energy density

Matter density

ò ∝ </2U'

Scale factor

R(t)

time

Cosmological 

constant

Space 

curvature





Jeans instability in an 
expanding Universe

At the galactic scale, the Jeans instability focuses on the deviations from
the smooth expansion of the Universe in a co-moving frame.

We expect the deviations to be small, and therefore :

- they can be approximated by a perturbation analysis
- we can use locally non-relativistic equations for the fluid
- we can treat gravitational perturbations as sufficiently small that a

Newtonian approximation is justified.

A comoving coordinate system is a reference frame that 
expands in tandem with the expansion of the Universe, 
thus factoring out the effect of the Hubble expansion



Jeans instability in an 
expanding Universe

DEFINITIONS

Proper distance : corresponds to where an object will be 
at a given cosmological time (this distance can change 
over time because of the expansion of the Universe)

Comoving distance takes into account the expansion of 
the Universe (therefore it is not changing over time)

The relation between proper distance and comoving 
coordinates is given by :

C = ≠ 6 ‚

Scale factor
Proper distance Comoving distance

Differentiating over time : 
3C
36
= S = ≠̇ 6 ‚ + ≠ 6 ‚̇ = ≠̇ 6 ‚ + 5

Velocity in 
comoving 

coordinates

Velocity from 
the expansion 

of the Universe Peculiar 
velocity 





Jeans instability in an 
expanding Universe

In our approximation, we say that locally we can use non-
relativistic equations for the fluid. 

Therefore : 
Ö2
Ö6 4

+ ∇4 . 2S = 0

ÖS
Ö6 4

+ S ⋅ ∇4S = −
1
2
∇4< − ∇Φ

∇'Φ = 4A∞2

Equation of 
continuity

Euler’s 
equation

Poisson’s 
equation

All these equations are with respect to the proper
distance. We need to transform them to a co-moving
frame.

Transforming the gradient to co-moving coordinates 
gives :

∇4→
1
≠
∇ë

The time derivative becomes : 
Ö
Ö6 4

→
Ö
Ö6 ë

+
Ö‚
Ö6 4

⋅ ∇ë

Hence : 
Ö
Ö6 4

=
Ö
Ö6 ë

−
≠̇
≠
‚ ⋅ ∇ë

C = ≠ 6 ‚

Tabulated !



Jeans instability in an 
expanding Universe

Let’s start by rewriting the equation of continuity : 
Ö2
Ö6 4

+ ∇4 . 2S = 0

Taking into account : 

∇4→
1
≠
∇ë

And 
Ö
Ö6 4

=
Ö
Ö6 ë

−
≠̇
≠
‚ ⋅ ∇ë

Ö2
Ö6
+
1
≠
∇ë ⋅ 25 = −32

≠̇
≠

Change of the density due to 
the cosmic expansion

Then the Euler’s equation
ÖS
Ö6 4

+ S ⋅ ∇4S = −
1
2
∇4< − ∇Φ

which becomes :
Ö5
Ö6
+
1
≠
5 ⋅ ∇ë5 +

≠̇
≠
5 = −

1
≠2

∇ë< −
1
≠
∇ëΦ− ≠̈‚

S = ≠̇ 6 ‚ + 5

The last term can be written as :

≠̈‚ =
1
2
≠̈∇ë‚' =

1
≠
∇ë

1
2
≠ ≠̈‚'

This helps to define a new potential :

í& = í +
1
2
≠ ≠̈‚'

The Euler’s equation can then be re-written as :

Ö5
Ö6
+
1
≠
5 ⋅ ∇ë5 +

≠̇
≠
5 = −

1
≠2

∇ë< −
1
≠
∇ëΦ&



Jeans instability in an 
expanding Universe

We can now re-write the cosmological field equations and
include the mean density of the Universe 2̅

≠̈
≠
+
4A∞2̅
3

1 + ò −
Λ
3
= 0

≠̇
≠

'

−
8A∞2̅
3

−
Λ
3
= −

E>U'

≠'

In our approximation of a non-relativistic fluid, and at
enough early epoch (Λ is negligible) we have :

≠̈
≠
+
4A∞2̅
3

= 0

The Poisson equation
∇'Φ = 4A∞2

Is now given by : 
1
≠'
∇ë'Φ& =

1
≠'
∇ë' Φ+

1
2
≠ ≠̈‚'

But in spherical coordinates : 

∇ë'
1
2
‚' =

1
2‚'

Ö
Ö‚

‚'Ö‚'

Ö‚
= 3

Using the Poisson equation and the field equations , we 
get : 

1
≠'
∇ë'Φ& = 4A∞2 − 4A∞2̅ = 4A∞2̅Δ

where we have for the density : 
2 = 2̅ 1 + Δ

Density contrast

Δ =
q − q̅
q̅

- = 3,/.r, and ô
?( ≪ .

∇4→
1
≠
∇ë



Jeans instability in an 
expanding Universe

SUMMARY OF THE FLUID EQUATIONS
IN CO-MOVING COORDINATES

The equation of continuity :
Ö2
Ö6
+
1
≠
∇ë ⋅ 25 = −32

≠̇
≠

The Euler’s equation :

Ö5
Ö6
+
1
≠
5 ⋅ ∇ë5 +

≠̇
≠
5 = −

1
≠2

∇ë< −
1
≠
∇ëΦ&

The Poisson equation :
1
≠'
∇ë'Φ& = 4A∞2̅Δ



Jeans instability in an 
expanding Universe

We also need to determine the governing equations for the
overdensity.

To simplify the analysis, we will consider that the pressure is
only function of the density, therefore we can expand it as :

< ≈ < 2̅ +
3<
32

2Δ = < 2̅ + U2'2̅Δ

From the cosmological principle we have :
∇< 2̅ = 0

We can also assume that the sound speed is constant.

Then, to first order assuming small perturbations, we have :
ÖΔ
Ö6
+
1
≠
∇ë ⋅ 5 = 0

Ö5
Ö6
+
≠̇
≠
5 = −

U2'

≠
∇ëΔ −

1
≠
∇ëΦ&

1
≠'
∇ë'Φ& = 4A∞ 2̅Δ

We now have a set of equations showing the
evolution of the overdensity !



Jeans instability in an 
expanding Universe

We now need to determine the time dependence of these
equations (to see how the overdensities evolve with time).

As for the local case, we can determine how the
perturbation evolve with time, making two assumptions :
- Small quantities
- Only first order

We have the following equations :
ÖΔ
Ö6
+
1
≠
∇ë ⋅ 5 = 0

Ö5
Ö6
+
≠̇
≠
5 = −

U2'

≠
∇ëΔ −

1
≠
∇ëΦ&

1
≠'
∇ë'Φ& = 4A∞2̅Δ

As in the local case, we can search for solutions of the form :
Δ = Δ 6 exp(éE, ⋅ ‚)

and we can demonstrate that the following equation gives
the time dependant overdensity for wave number E = E,/≠ :

3'Δ
36

+ 2
≠̇
≠

3Δ
36

= 4A∞2 − E'U2' Δ



Jeans instability in an 
expanding Universe

THE GROWTH OF INSTABILITIES 

We can now contrast the growth of instabilities in a 
non-expanding and expanding universe. 

We obtain the static case by making the following 
assumptions :
- ≠̇ = 0 (no expansion of the Universe)
- Solutions are of the form : Δ = Δ" exp é(E,‚ − Ω6)

Then :
3'Δ
36'

= 4A∞2 − E'U2' Δ

We get the same dispersion relation as before :
Ω' = U2'E' − 4A∞2

then , as previously, this gives exponentially growing modes 
for U2'E' < 4A∞2, or : 

z > zS = U2
A
∞2

#/'

Static universe

When z ≫ zS, the modes grow like exp(6/q) where q ∼
4A∞ 2 1#/'



Jeans instability in an 
expanding Universe

THE GROWTH OF INSTABILITIES 

We consider now the simplest model of an expanding 
Universe : the flat Universe described by the Einstein-
de-Sitter universe.

PROPERTIES OF THE EINSTEIN-DE-SITTER UNIVERSE
Ωa = 1

≠
≠"

=
6
6"

'/!
=

3
2
%"6

'/!

%' =
8A∞2
3

4A∞2̅ =
2
36'

To simplify, we also consider the case where the 
gravitational attraction is much stronger than the pressure 
force, i.e : 

4A∞2̅ ≫ U2'E'

Then we can rewrite the equation for the time dependent 
overdensity : 

3'Δ
36

+ 2
≠̇
≠

3Δ
36

= 4A∞2 − E'U2' Δ

such as :
3'Δ
36

+
4
36
3Δ
36
−

2
36'

Δ = 0



Jeans instability in an 
expanding Universe

3'Δ
36

+
4
36
3Δ
36
−

2
36'

Δ = 0

It is easy to verify that for solutions of the form Δ ∝ 6R, 
the growing modes have : 

Δ ∝ 6
'
! ∝ ≠ ∝ 1 + ( 1#

CONCLUSIONS 
• Perturbations only grow algebraically

(and not exponentially) with time
• This basic result is similar for other

cosmologies as well.

We can modify this analysis to account for the early 
radiation dominated phase of the Universe as follow :
- 4A∞ must be replaced by 32A∞/3
- In the radiation dominated phase ≠ ∝ 6#/'

Then :
Δ ∝ 6 ∝ ≠' ∝ 1 + ( 1'

≠
≠"

=
6
6"

'/!



The need for dark matter
In the early, radiation dominated, Universe when 
matter and radiation are strongly coupled, we have :

2 ∝
1
≠!

∝ +!

Then :

Δ =
Õ2
2
≈ 3

Õ+
+

According to Planck
í7
7
∼ 101O

After recombination, the matter perturbations grow 
via gravity approximately according to the results of 
the previous section. Since :

Δ ∝ 6
'
! ∝ ≠ ∝ 1 + ( 1#

Then 
Δ ( = 0 ∼ Δ ( = 1500 × 1 + 1500 ∼ 0.05

Δ ( = 1500 = 3×101O

Δ =
2 − 2̅
2̅ This is clearly not the case !

(Δ > 1)



Summary of the last lecture

Main goal : study how overdensities evolve in a
cosmological context (i.e. accounting for the expansion
of the Universe)

C = ≠ 6 ‚

Ö2
Ö6 4

+ ∇4 . 2S = 0

ÖS
Ö6 4

+ S ⋅ ∇4S = −
1
2
∇4< − ∇Φ

∇'Φ = 4A∞2
Equation of 
continuity

Euler’s 
equation

Poisson’s 
equation

Equation of 
continuity

Euler’s 
equation

Poisson’s 
equation

∇4→
1
≠
∇ë

Ö
Ö6 4

=
Ö
Ö6 ë

−
≠̇
≠
‚ ⋅ ∇ë



Ö2
Ö6
+
1
≠
∇ë ⋅ 25 = −32

≠̇
≠

Ö5
Ö6
+
1
≠
5 ⋅ ∇ë5 +

≠̇
≠
5 = −

1
≠2

∇ë< −
1
≠
∇ëΦ&

1
≠'
∇ë'Φ& = 4A∞2̅Δ

Summary of the last lecture

Equation of 
continuity

Euler’s 
equation

Poisson’s 
equation

APPROXIMATIONS

- Instabilities can be treated by a perturbation
analysis

- we can use locally non-relativistic equations for
the fluid

- we can treat gravitational perturbations as
sufficiently small that a Newtonian
approximation is justified.

≠̈
≠
+
4A∞2̅
3

= 0

ΩP =
Λ
3%'

!!! Typos!!!

2 = 2̅ 1 + Δ

Main goal 



Summary of the last lecture

ÖΔ
Ö6
+
1
≠
∇ë ⋅ 5 = 0

Ö5
Ö6
+
≠̇
≠
5 = −

U2'

≠
∇ëΔ −

1
≠
∇ëΦ&

1
≠'
∇ë'Φ& = 4A∞ 2̅Δ

Equation of 
continuity

Euler’s 
equation

Poisson’s 
equation

Δ = Δ 6 exp(éE, ⋅ ‚)

Solution of the form :

3'Δ
36

+ 2
≠̇
≠

3Δ
36

= 4A∞2 − E'U2' Δ

E = E,/≠

3'Δ
36'

= 4A∞2 − E'U2' Δ

Static Universe : 

exp(
6

4A∞ 2 1#'
)

Modes grow exponentially

Expanding Universe
flat Einstein – de Sitter Universe ; no DM

3'Δ
36

+
4
36
3Δ
36
−

2
36'

Δ = 0

Δ ∝ 6
'
! ∝ ≠ ∝ 1 + ( 1#

Modes grow algebraically



Summary of the last lecture
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Δ ∝ 6 ∝ ≠' ∝ 1 + ( 1'

2 ∝
1
≠!

∝ +!

Δ ∝ 6
'
! ∝ ≠ ∝ 1 + ( 1#

Δ ( = 0 ∼ Δ ( = 1500 × 1 + 1500 ∼ 0.05

í7
7
∼ 101O

Δ (4<, = 1500 = 3×101O

Different from what is observed today !

‰H≠1 ÆH++G≠



Summary of the last lecture



Perturbations with dark matter

If we now consider the presence of dark matter and 
baryonic matter, then we need to solve the following 
coupled equations : 

3'Δ(
36'

+ 2
≠̇
≠

3Δ(
36

= H2(Δì + A2îΔî

3'Δî
36'

+ 2
≠̇
≠

3Δî
36

= H2(Δì + A2îΔî

where A is a constant

Valid for both matter dominated universe
and for the radiation dominated case
depending on the choice of the constant A.

First case : epoch immediately after recombination
• H = 4A∞
• Ωî ≈ 1 and Ω( ≪ 1 ; then 2(Δ( ≪ 2îΔî the 

second equation is therefore   :
3'Δî
36

+ 2
≠̇
≠

3Δï
36

= 4A∞2î Δï

we have just discussed
• We write the solution as Δî = s×≠ where s is a 

constant. 

We can demonstrate that the equation for Δ( is then :

≠
'
(
.
.Y

≠1
5
(
.D&
.Y

+ 2
.D&
.Y

=
!
'
s

3'Δ
36

+
4
36
3Δ
36
−

2
36'

Δ = 0
3'Δ
36

+ 2
≠̇
≠

3Δ
36

= 4A∞2 − E'U2' Δ



Perturbations with dark matter
≠
!
'
3
3≠

≠1
#
'
3Δ(
3≠

+ 2
3Δ(
3≠

=
3
2
s

which has the  solution Δ( = s ≠ − ≠"

Δî = s×≠
then s = Δî/≠

Δ( ∼ Δî 1 −
(
("

≠ ∝ 1 + ( 1#

This implies that the amplitude of the baryonic
perturbation quickly grows to that of the dark matter,
no matter how small the baryonic perturbation is at
( = (", e.g. at recombination.



Evolution of perturbations
Now we can summarize the process of structure formation at the cosmological scale

In the very early Universe, any initial
perturbations on scales larger than the Jeans
length grow as ≠'since radiation dominated.

Δ ∝ 6 ∝ ≠' ∝ 1 + ( 1'

At this stage, the amplitudes of perturbations in baryonic, 
dark matter, and radiation are equal since they are coupled

In the Λî‰Æ cosmologies, we assume that
dark matter is made of heavy particles

The cold dark matter decouples from the radiation at 
an early epoch

At a redshift (<V ≈ 4×10*Ωℎ' the
Universe switches from radiation to
matter dominated

The perturbations now grow as R,
however perturbations in the radiation
and baryonic gas are damped

Δ ∝ 6'/! ∝ ≠ ∝ 1 + ( 1#

After the epoch of recombination, the
baryonic matter decouples from the
radiation

Quickly perturbations in the 
baryonic gas start to follow 
those in the CDM as we just 

have shown



Evolution of perturbations

≠

Δ

≠<V ≠4<,≠<V

Δîa

Δ(

Δ ∝ ≠'

Δ ∝ ≠



Evolution of perturbations

To get a first estimate of the typical masses of the first
structure, we can determine the Jeans mass just after
recombination.

zS =
2A
EQ

U2'EQ
' = 4A∞2

zS = U2
A
∞2

#/'

The sound speed has been defined at the beginning of
this course as :

U2' =
5
3
E(+
F

=
5
3
E(+
~\

The Jeans mass is given by :

ÆS =
4A
3

zS
2

!

2=

with 2= = 1 + (<V
!
2,Ω=

Redshift of matter-
radiation equality

Numerical application gives that the minimum mass of the 
first structures in the Universe is [X ∼ 3×10d[⊙



Evolution of fluctuations, non-
linear collapse and hierarchical 
structure formation
Chapter 10 



The Power Spectrum of 
fluctuations

The power spectrum determines the mass-spectrum of 
the initial perturbations and the initial spatial 
distribution of structure in the Universe. 

To determine the power spectrum, we first need to 
define the two-point correlation function : excess 
probability of finding a galaxy (or density 
enhancement) at a distance C from a galaxy (or density 
enhancement) randomly selected in a uniform, random 
distribution. 

The number of galaxies in volume 3T at C from any 
galaxy :

3… C = …" 1 + ∏ C 3T

Number of 

galaxies in dV

Average 

number density 

of galaxies

Two-point 

correlation 

function

Which could be rewritten as the probability of finding 
pairs :

3…[:@4 = …"
' 1 + ∏ C 3T#3T'

THE TWO-POINT CORRELATION FUCNTION



The Power Spectrum of 
fluctuations

The two-point correlation function can be directly 
related to the density contrast, and we can write the 
density as : 

2 = 2"[1 + Δ º ]

And then the pairwise numbers of galaxies separated 
by C is : 

3…[:@4 C = 2 º 3T#2 º + C 3T'
Hence 
3…[:@4 C = 2"

' 1 + Δ º 1 + Δ º + C 3T#3T'

Density contrast

Δ =
q − q̅
q̅

By averaging over a large volume (< Δ > = 0 by 
definition => only the cross term remains) 

3…[:@4 C = 2"
' 1 +< Δ º Δ º + C > 3T#3T'

Inserting :
3…[:@4 = …"

' 1 + ∏ C 3T#3T'
Within the previous equation, gives : 

∏ C =< Δ º Δ º + C >

THE TWO-POINT CORRELATION FUCNTION

3…[:@4 = …"
' 1 + ∏ C 3T#3T'



The Power Spectrum of 
fluctuations

THE POWER-SPECTRUM OF FLUCTUATIONS

The Fourier transform for Δ C is defined as : 

Δ C =
T
2A!

∫ ΔE exp −éE ⋅ C⃗ 3!E

with 

ΔE =
1
T
∫ Δ C exp −éE ⋅ C⃗ 3!º

Remember that the Parseval’s theorem gives :
1
T
∫ Δ' C 3!º =

T
2A ! ∫ ΔE '3!E

Also noted H(7) : 

Power spectrum of 

the fluctuations

Then :

< Δ' >=
T
2A ! ∫ ΔE '3!E =

T
2A ! ∫ < E 3!E

The two point correlation function is spherically 
symmetric  (3!E = 4AE'3E ):

< Δ' >=
T
2A'

∫ ΔE 'E'3E =
T
2A'

∫ < E E'3E

< Δ' > Density contrast

Δ =
q − q̅
q̅

Comoving wavevector



The Power Spectrum of 
fluctuations

We can also write Δ(º) as a Fourier series such as :

Δ º = ΣEΔE exp(−éE ⋅ º⃗)

Remember that, the two point correlation function is 
given by :

∏ C =< Δ º Δ º + C >
Hence : 

∏ C =< ΣEΣEdΔEΔEd exp −é E − Ed ⋅ º⃗ exp(éEd ⋅ C⃗) >

Given the orthogonality of the Fourier basis, the cross 
terms vanish except those with k=k’, therefore : 

∏ C = Σ ΔE ' exp(éE ⋅ C⃗)
and (in terms of Fourier integral):

∏ C =
T
2A ! ∫ ΔE 'exp ik ⋅ C⃗ 3!E

The two-point correlation function is real, therefore we 
are only interested in the integral of the real part of the 
exponential, i.e cos E ⋅ C = cos(EC cos Q)

Moreover, because of the spherical symmetry of the two-
point correlation function, we integrate over the angular 

part of the volume element 
#
'
sin Q3Q :

∏ C =
T
2A'

∫ ΔE ' sin EC
EC

E'3E

=
T
2A'

∫ < E
sin EC
EC

E'3E

The inverse Fourier transform gives the Power Spectrum :

< E =
1
T
W
"

;
∏ C

sin EC
EC

4AC'3C

Spherical 

coordinates

< Δ' >=
T
2A'

∫ ΔE 'E'3E

Only allows 

wavenumbers R ≤ #
5 to 

contribute to the 
amplitude of fluctuations



The Power Spectrum of 
fluctuations

THE INITIAL POWER-SPECTRUM

From CMB observations, we know that the form of the 
initial perturbation is a power-law with no preferred scale 
as : 

< E = ΔE ' ∝ ER

Then, the two-point correlation function has the 
following form : 

∏ C ∝ W
sin EC
EC

ER$'3E

ñóò E4
E4

≈ 1

for EC ≪ 1

We can therefore integrate k from 0 to kmax =1/r to 
estimate the dependence of the amplitude of the 
correlation function : 

∏ C ∝ C1 R$!

But the mass in the perturbation is Æ ≈ 2C!, then :
∏ Æ ∝ Æ1 R$! /!

And the density contrast for a mass scale M : 

Δ Æ = < Δ' >#/'∝ Æ1 R$! /H

∏ C =
T
2A'

∫ ΔE ' sin EC
EC

E'3E



The Power Spectrum of 
fluctuations

THE HARISSON-ZEL’DOVICH POWER SPECTRUM 

This is the special case where the index of the power 
law n=1 : 

< E = ΔE ' ∝ ERg#

Hence : 
Δ Æ ∝ Æ1'/!

And 
∏ ∝ C1* ∝ Æ1*/!

EVOLUTION OF THE POWER SPECTRUM

The Power Spectrum is modified from its initial form as 
the Universe evolves. It interacts with 3 main 
components : 
- Baryonic matter
- Non-baryonic matter
- Photons 

We define the Transfer Function as the function 
describing how the shape of the initial Power Spectrum 
in the dark matter is modified by different processes : 

ΔE ( = 0 = + E ? ( ΔE(()

Power spectrum at 

the present epoch

Transfer function

The linear 

growth factor 

between the 

scale factor at z 

and z=0

Initial Power 

Spectrum

The interest of this particular spectrum is that the 
density contrast Δ Æ has the same amplitude on all 
scales when perturbations come through their particle 
horizon.



The Power Spectrum of 
fluctuations

Consider an initial power-law power spectrum : 
< E = ΔE ' ∝ ER

A critical point in the evolution of the perturbations is 
when their size is equal to the horizon size (i.e. the 
Universe size). 
For a perturbation of size r, this happens when C ≈ U6-
we say that the perturbation has entered the horizon

Before the perturbation entered the horizon (during 
the radiation dominated era), their density contrasts 
grew as ΔE ∝ ≠' on all scales (Monday’s lecture)

If the perturbations came through the horizon during 
the radiation dominated phase, the dark matter 
perturbations were gravitationally coupled to the 
radiation dominated plasma, and their amplitudes 
were stabilised. 

Therefore as soon as the perturbations came through the 
horizon the perturbations ceased to grow until the epoch of 
equality.

After that time all perturbations grew as ΔE ∝ ≠

T<47 kyr
after BB

Between crossing their particle horizons at scale factor RH and 
the epoch of equality Req, the amplitudes of the perturbations 

were damped by a factor 
Y1
Y3^

'
relative to the unmodified 

spectrum : 

ΔE ∝ E
R
'

≠\
≠<V

'

Transfer function



The Power Spectrum of 
fluctuations

Since E ∝ ≠\
1#, it follows that the transfer function 

+(() has the asymptotic forms : 
- +E = 1 for Æ ≥ Æ<V , E ≤ E<V
- +E ∝ E1' for Æ ≤ Æ<V , E ≥ E<V

Thus, for small masses, the ‘processed’ power 
spectrum < E ∝ +E

' is flatter than the input spectrum 
of perturbations by a power E1* :

< E = ΔE ' ∝ ER1*

And 
∏ C ∝ C1 R1# or ∏ Æ ∝ Æ1 R1# /!

Large scales Small scales



The Power Spectrum of 
fluctuations



Summary of the last lecture

We defined the two-point correlation
function as the excess probability of finding a
galaxy at a distance C from a galaxy randomly
selected in a uniform, random distribution.

3…[:@4 = …"
' 1 + ∏ C 3T#3T'

2 = 2"[1 + Δ º ]

∏ C =< Δ º Δ º + C >

The power spectrum determines the mass-
spectrum of the initial perturbations and the initial 
spatial distribution of structure in the Universe. 

< E =
1
T
W
"

;
∏ C

sin EC
EC

4AC'3C

From the CMB we know that : < E = ER



Summary of the last lecture

To study the evolution of the initial Power 
Spectrum, we defined the Transfer Function

ΔE ( = 0 = + E ? ( ΔE(()

ΔE ∝ E
R
'

≠\
≠<V

'

- +E = 1 for Æ ≥ Æ<V , E ≤ E<V
- +E ∝ E1' for Æ ≤ Æ<V , E ≥ E<V



Non-linear collapse of a 
spherical overdensity

Main idea : to model the evolution of perturbations 
into the non-linear regime, we consider a single 
spherical overdensity

Assumptions :
- One spherical overdensed region of radius ≠2 and density 22
- A spatially flat Universe 

=> Einstein-de-Sitter Universe with mean density 2̅ with a scale factor ≠
- Take recombination as a reference epoch 

- With a mean density in the universe : 2" = 2̅(6")
- Scale factor ≠"
- Mass Æ, Radius ≠9- and density : 

29- =
3Æ

4AR9-
!

As in the classical Gauss’s theorem, in general 
relativity for a perfectly spherical geometry, the mass 
inside a sphere is not influenced by the material 
outside the sphere



Non-linear collapse of a 
spherical overdensity

Assumptions [..]:
- To simplify the algebra, we choose a co-moving coordinates such that the outer 

radius of our spherical overdensity has ‚ = 1
=> hence the scale factor is just the radius  the overdensity would have if it 

expended with the Hubble flow in our flat Universe
=> At 6 = 6", therefore ≠9- = ≠"

The evolution of both Universe as a whole and the overdensity are described by the 
field equations : 

≠̈
≠
+
4AG2
3

1 + ò −
Λ
3
= 0

≠̇
≠

'

−
8A∞2
3

−
Λ
3
= −

EU'

≠'

C = ≠ 6 ‚



Non-linear collapse of a 
spherical overdensity
Background Universe : Einstein-de-Sitter

- E = 0, Λ = 0, ò = 0
- Ω= = 1

-
Y
Y-
=

?
?-

'/!
=

!
'
%"6

'/!

- %' =
Ö+`ôi
!

- 4A∞2̅ =
'
!ö(

The evolution of both Universe as a whole and the 
overdensity are described by the field equations : 

≠̈
≠
+
4AG2
3

1 + ò −
Λ
3
= 0

≠̇
≠

'

−
8A∞2
3

−
Λ
3
= −

EU'

≠'

Evolution of the overdensity : 
The overdensity means that for the region of the Universe within the radius ≠2 the 
Universe must be closed (because we have the overdensity) with E = 1
The equation for the radius of the overdensity is : 

̇≠2
≠2

'

−
8A∞29-≠9-

!

3 ≠9
! = −

EU'

≠9
'



Non-linear collapse of a 
spherical overdensity

At 6 = 6" : 
- The radius of the overdensity is ≠9-
- The mean cosmological density is 2"

Introducing variables changes : 

- We define the conformal time as : È = ∫"
?
U

.?L

Y ?L

- Dimensionless radius : â = ≠2/≠9-

- A constant : â= =
Ö+`iM-YM-

(

!,(

- We also define the two cosmological densities : 

Ω9 =
Ö+`iM
!\M

( and Ω9- =
Ö+`iM-
!\M-

(

We assume that the perturbation is still approximately 
following the Hubble flow at 6 = 6", then : 

%9- ≈ %" and 29- ≈ Ω9-2"

̇≠2
≠2

'

−
8A∞29-≠9-

!

3 ≠9
! = −

EU'

≠9
'

1
â
3â
3È

'

=
â=
â
− 1

Solution with boundary conditions 
for Big-Bang cosmology 

â =
≠9
≠9-

=
â=
2
(1 − cos È)

6 =
≠9-
U
â=
2
(È − sin È)

Assumptions :
- One spherical overdense region of radius _( and density !(
- An Einstein-de-Sitter Universe with mean density !̀ with a 

scale factor _(9)
- Take recombination as a reference epoch 

- mean density in the universe : !* = !̀(9*)
- Scale factor _*
- Mass S, Radius _+$ and density :  !+$ =

,-
./0%$

&



Non-linear collapse of a 
spherical overdensity

â =
≠9
≠9-

=
â=
2
(1 − cos È)

6 =
≠9-
U
â=
2
(È − sin È)

The overdensity will reach a maximum 
radius ≠= at a time 6= where (È = A) : 

≠= = â=≠9- =
Ω9-

Ω9- − 1
≠9-

And 

6= =
A
2

≠9-
U
â= =

AΩ9-

2%9- Ω9- − 1
!/'

where ≠9- =
,
\M-

Ω9- − 1
1#/'

- Overdensity collapses to its final state at a time 26= È = 2A
- Point where the overdensity reaches its maximum is turn around
- Density within the collapsing overdense region at turn around is 

22 6= = 29-
YM-
Y[

!
≈ 2"Ω9-

YM-
Y[

!
= 2AΩ9-

õM-1#

õM-

!

õ& =
83Tq6$Ö6$

"

3Q"

Ω6$ =
83Tq6$
3ù6$

"

Assumptions :
- One spherical overdense region of radius _( and density !(
- An Einstein-de-Sitter Universe with mean density !̀ with a 

scale factor _(9)
- Take recombination as a reference epoch 

- mean density in the universe : !* = !̀(9*)
- Scale factor _*
- Mass S, Radius _+$ and density :  !+$ =

,-
./0%$

&



Non-linear collapse of a 
spherical overdensity

22 6= = 29-
YM-
Y[

!
≈ 2"Ω9-

YM-
Y[

!
= 2AΩ9-

õM-1#

õM-

!

- The mean density in the Universe at turn around is : 

2̅ 6= = 2"
≠9-
≠ 6=

!

Radius a sphere of radius Ö6$at
time r$ would have if following
the smooth cosmological
expansion at r&

≠(6=)
≠"

=
6=
6"

'/!
=

3
2
%"6=

'/!

For Einstein de Sitter cosmology 

22 6=
2̅ 6=

≈
Ω9- − 1

!
Ω9-
1'

3%"6=
2

1'

But %"6= ≈ %9-6= =
+õM-

' õM-1#
'/(

22 6=
2̅ 6=

≈
3AΩ9-

4 Ω9- − 1
!
'

'

×
Ω9- − 1

!

Ω9-
' =

3A
4

'

Independent of the initial overdensity

Assumptions :
- One spherical overdense region of radius _( and density !(
- An Einstein-de-Sitter Universe with mean density !̀ with a 

scale factor _(9)
- Take recombination as a reference epoch 

- mean density in the universe : !* = !̀(9*)
- Scale factor _*
- Mass S, Radius _+$ and density :  !+$ =

,-
./0%$

&



Non-linear collapse of a 
spherical overdensity

The collapsed object forms at a time 65 = 26= : 
- The redshift of turn around : (=
- The redshift of formation : (5

Related in the Einstein de Sitter Universe by : 
1 + (=
1 + (5

=
≠ 26=
≠ 6=

= 2'/! ≈ 1.59

≠ ∝ 6'/!

The collapse is halted by the internal pressure and the 
end state will be determined by the virial equilibrium, 
the object will be virialised : 

21m +Φm = 0

Internal energy
(thermal + turbulent) 

Gravitational 
potential energy

If the collapsing object has little kinetic energy at turn 
around (i.e. its peculiar velocity is small), the 
conservation of energy gives : 

−
∞Æ'

≠=
= 1m −

∞Æ'

≠m
= −

1
2
∞Æ'

≠m
hence ≠m =

#
'
≠=

- The density will be eight times the density 
at turn around (2 ∝ ≠1!)

- Object has now fully decoupled from the 
Hubble flow 



Non-linear collapse of a 
spherical overdensity

The density of the Universe at the formation epoch is given by : 

2̅ (5 =
1 + (5
1 + (=

!

2̅ (=

1 + Y)
1 + Y!

=
Z 2&)
Z &)

= 2&/+ ≈ 1.59

Hence the virialised density is given by : 
2m ∼ 5.6×8×2̅ (= = 1.59 !×5.6×8×2̅ (5

22 ?[
2̅ 6=

∼ 5.6 ≠m =
1
2
≠=

Finally  2m ∼ 200 2̅ (5 ∼ 200 2̅ ( = 0 1 + (5
!

The final de-coupled virialised object has a density 200 times larger 
than the density of the universe at the epoch of its formation



Application to the Milky Way

We can apply the previous analysis to our Milky Way. 
It applies to all the matter and is therefore dominated 
by dark matter. 

For the Milky Way we know that : 
- Æîa ≈ 3×10##Æ⊙
- ≠îa ≈ 50 E#U

Calculating 2îa(ÆÍ) and comparing to 2̅ ( = 0
gives (5 ∼ 2.5



Hierarchical structure 
formation

The typical Jeans mass we found is crucial in 
understanding the process of galaxy formation. 

The structure which initially form in a CDM cosmology 
are much smaller than the scale of a typical galaxy we 
can observe in the local Universe.

Indeed the initial structures collapse under their own 
self-gravity to form dark matter halos

These dark matter halos are of course subject to 
gravitational interactions and can merge under their 
mutual gravitational interaction to form larger 
structures

Illustris is one of the best simulations following this process.  





The Press-Schechter Mass 
Function

Assumption : primordial density perturbations are 
Gaussian fluctuations

Random phases of 
perturbation modes

Gaussian amplitude distribution of 
the probabilities :

# Δ =
1

2An Æ
exp −

Δ'

2n' Æ

Density contrast : 

Δ =
Õ2
2

< Δ' >=<
Õ2
2

'

≥ n'(Æ)

Assumptions : 
- Perturbations grow according to the linear theory 
until they reach a critical density contrast Δ,
(density contrast at 6=)
- The perturbations had a power-law power 

spectrum < E = ER

- In a Einstein-de-Sitter Universe : 
Ω" = 1 , ΩP = 0

Perturbations grow as Δ ∝ ≠ ∝ 6'/!



The Press-Schechter Mass 
Function

For fluctuations of a given mass Æ, the fraction I(Æ) of those 
which became bound at a particular epoch have Δ > Δ, :

I Æ =
1

2An Æ
W
D.

$;
exp −

Δ'

2n' Æ
3Δ =

1
2
[1 − Φ 6, ]

with 6,, the threshold density contrast in units of the rms 
density fluctuation : 

6, =
Δ,
2n

and Φ º is the probability integral : 

Φ º =
2

A
W
"

U
!1?

(
36

The mean-squared density contrast in terms of the 
power-spectrum of fluctuations is given by : 

n' Æ =<
Õ2
2

'

>=< Δ' >= HÆ1 !$R /!

We can also express 6, in terms of the mass 
distribution : 

6, =
Δ,
2n Æ

=
Δ,
2H#/'

Æ(!$R)/H =
Æ
Æ∗

(!$R)/H

Æ∗ =
2H

Δ,
'

!/(!$R)

The amplitude of the perturbation grew as Δ Æ ∝
≠ ∝ 6'/!

Hence, n' Æ = Δ' Æ ∝ 6
U
',or H ∝ 6*/!, then :

Æ∗ ∝ H
!

!$R ∝ 6
*

!$R

and Æ∗ = Æ"
∗ ?

?-

*/(!$R)

∏ Æ ∝ Æ1 R$! /!



The Press-Schechter Mass 
Function

The fraction of perturbations with masses in the 
range Æ to Æ + 3Æ exceeding Δ, is : 

3I = −
ÖI
ÖÆ

3Æ

because F is decreasing 
function of increasing M

In the linear regime, the mass of the perturbation is 
Æ = 2̅T where 2̅ is the mean density of the 
Universe. 

Once the perturbation became non-linear collapse 
start and then a bound object of mass Æ is formed.

The space density per unit mass of perturbations in the mass 
range Æ and Æ + 3Æ which will become bound is : 

… Æ =
3m Æ
3Æ

=
1
T
3I
3Æ

= −
2̅
Æ
ÖI
ÖÆ

I Æ =
1
2
[1 − Φ 6, ] Φ º =

2

A
W
"

U
!1?

(
36

3Φ
3º

=
2

A
!1U

(
6, =

Æ
Æ∗

(!$R)/H

… Æ =
1

2 A
1 +

m
3

ã2
Æ'

Æ
Æ∗

(!$R)/H

exp −
Æ
Æ∗

!$R
!



The Press-Schechter Mass 
Function

… Æ =
1

2 A
1 +

m
3

ã2
Æ'

Æ
Æ∗

(!$R)/H

exp −
Æ
Æ∗

!$R
!

• This formalism results in only half the total mass density
being condensed into bound objects because of the fact
that, according to this simple analysis, only the positive
density fluctuations developed into bound systems

• Underlying cause of this factor of two discrepancy is the
fact that the above analysis is based upon the linear
theory of the growth of the perturbations

• Once perturbations developed to large amplitude, mass
was accreted from the vicinity of the perturbation and N-
body simulations show that most of the mass was indeed
condensed into discrete structures.

As a function of redshift



From the Feedback survey : 
what is the difference between Jeans Mass and the Bonnor Ebert Mass ?

Æ = U&
#/' E(+

F

' 1

∞!/'<"
#/' = U&

#/' â7
!

2"
#/'∞!/'

Bonnor-Ebert Mass

ÆS
Æ⨀

= 1.0×
+
101

!/'

×
m\

2×10#"~1!

1#/'

Jeans Mass

E(+
F

= â7
'

Obtained from a singular isothermal sphere 
and the equation of the virial equilibrium

Obtained from a perturbation analysis of the 
fluid equations

By definition : mass above 
which gravity dominates 



Galaxy formation and 
evolution, star formation 
history of the Universe
Chapter 11



The first objects
Following recombination baryonic gas is neutral.
As the Universe expands a number of things
occur :

• The CMB cools proportional to 1/≠
hence its temperature is given by :
+Fa( ( = +Fa( ( = 0 ×(1 + ()

• The baryonic gas not associated with self-
gravitating objects cools adiabatically and
faster than this proportional to 1/≠'

since its adiabatic index is 5/3

• The process of hierarchical structure
formation is occurring all the time with
the merger of dark matter halos to form
ever larger self-gravitating objects At first however, there is no star formation or 

formation of black holes and AGN : the universe is 
dark apart from the CMB radiations : the dark ages .



The first objects
Following recombination baryonic gas is neutral.
As the Universe expands a number of things
occur :

• At some point the density of baryonic gas
in halos becomes sufficiently large that
the first stars and/or AGNs form

• The first objects produce UV and/or X-Ray
emission which starts to ionise the
neutral hydrogen outside of the densest
regions. This epoch, when the first
objects form is therefore called the Epoch
of reionisation.

• Importantly, it is observable via the 21-
cm transition of hydrogen redshifted to
low frequencies corresponding to this
epoch.



The first objects

At high densities, collisions keep the spin temperature
equal to the kinetic temperature of the gas.

As the density falls, collisions become less important, and
interaction with the photon field determines the spin
temperature

Initially these are CMB photons, but once the first objects
start to form, a small UV flux is present and this acts to
excite neutral hydrogen to an excited electronic energy
state. Then, the hydrogen returns to the ground state. The
probability of returning to either of the split levels is
determined by the kinetic temperature of the gas

WHAT IS THE EFFECT OF STAR FORMATION ON THE 
HYDROGEN SPIN TEMPERATURE ?

The spin temperature is directly related to the
populations of the ground state of hydrogen :

m'
m#
=
B'
B#
exp(−

ℎM'#
E(+

)



The first objects
• After recombination gas and CMB cool adiabatically,

the kinetic temperature is +û < +Fa(
• Initially, the density is large enough that collisions

ensure +9 ∼ +û
• As density falls, CMB determines +9 → +Fa(
• Overdensity collapse forming the first objects

• As first objects form, UV resonant scattering couples
+9 → +Fa(

• Gas temperature increases, and so does +9 due to
heating from stars and AGN

• UV and X-Ray flux ionise the gas and +9 → 0

+ 2
−
+ û



The first objects
• What we observe is the hydrogen seen against the CMB : we

are in the Rayleigh-jeans limit.

• The observe brightness of the 21 cm line is given by :

+> = 27 º\/ 1 + Õ>
+2 − +Fa(

+9

1 + (
10

#
' Ö454

1 + ( % (

1#

~1



The first observational evidence 
of Cosmic Dawn

Bowman et al. (2018) Bevins et al. (2022)



Baryonic gas in dark matter 
halos

Overdensity in the baryonic gas catches up that in the
dark matter :

Δ( = Δî(1 −
(
("
)

This suggests a simple picture for behaviour of baryonic
gas :
• Baryonic gas should fall into pre-existing or growing

dark-matter halos
• Typical infall velocities will be of order the free-fall

speed (∼ ∞Æ/≠) this greatly exceeds the sound speed
in the baryonic gas.

• The gas therefore passes through a shock - a structure
formation shock – and is heated

• The matter forms a virially supported structure of
radius :

≠m =
1
2
≠=

• The mean matter density in the halo is given by :

2m ∼ 200 2̅ (5 ∼ 200 2" 1 + (5
!

where 2"is the total matter density in the Universe at the
current epoch.



Baryonic gas in dark matter 
halos

We now assume that matter has a density structure given by
the singular isothermal sphere :
• “pressure support” for the dark matter we take to be due to

the random motions of the non-interacting dark-matter
particles

• For baryons we have normal pressure support.

The baryonic gas is in hydrostatic equilibrium in this potential
well

The halo is characterised by its total mass – the virial mass Æm :

• Mass of dark matter : Æî =
õa
õb

Æm

• Mass of baryonic gas : Æ( =
õ&
õb

Æm

• The virial radius of the halo is given by :

≠m =
3Æm

4A2m

#/!

=
3Æm

4A2002"

#
!
1 + ( 1#

F, ∼ 200 F̅ Y! ∼ 200 F̅ Y = 0 1 + Y!
+

The equation of hydrostatic equilibrium for the
baryonic gas is :

1
2&

3<
3C

= −
∞Æ C
C'

For a singular isothermal sphere :

2 =
:(

'+`4(
and Æ =

':(4-
`

Then :

2 C =
Æm

4A≠mC'
=
2m≠m'

3C'
Integrating :

Æ C = W
"

4
2 Cd 4ACd'3Cd = Æm

C
≠m



Baryonic gas in dark matter 
halos

The equation of state of the baryonic gas is :

< =
2&E(+

F

1
2&

3<
3C

= −
∞Æ C
C' 2 C =

2m≠m'

3C'
Æ C = Æm

C
≠m

Therefore :

E+m =
∞ÆmF
2≠m

∝ Æm

'
!(1 + (5)

and

+m ≈ 3.6×10O
ac

#"5(a⊙

(
'
(1 + (5) K

The growth of halo is done via hierarchical structure
formation.

The cooling of baryonic gas is dominated by line
emission (see chapter 2). In the low density limit the
emissivity is given by :

ò = m'Λ + ≈ m'†
@

B3,@
Bo,@

î3o,@ℎM@!@
1I)/E&7

The collisional de-excitation rates have a
temperature dependence in +1#/', then :

ò ≈ m'Λ"
+
+"

1#/'



Baryonic gas in dark matter 
halos

The cooling time for the gas depends on the radius, and is given by :

6, C =

3
22& C E(+m

F
m'Λ +

=
3FE(

2Λ"+"
#/'

+m

!
'

2&
= H

+m
1!/'

2&

We find the characteristic cooling time for the halo by averaging over all
the particles in the halo :

̅6, =
1
Æm

W
"

Yc
6, C 2&4AC'3C =

H
Æm

W
"

Yc +m

!
'

2&
2&4AC'3C

=
H
Æm

+m
!/' 4

3
A≠m! = H

+m

!
'

2m

∝
Æm
'/! 1 + (5

!/'

1 + (5
! ∝ Æm 1 + (5

1!/'



Baryonic gas in dark matter 
halos

Inserting numbers gives :
̅6,
ƒC

= 6.4×10#"
Æm

10#'Æ⊙
1 + (5

1!/'

Cooling is therefore more efficient in low-mass halos and 
those which form at high-redshift

The Age of the Universe in a Einstein-de-Sitter Universe is given by :

63 = 1.2×10#" 1 + (5
1!/'

yr

If 6, is much less than 63 we expect all the
gas to cool à predicts many small halos
where all the gas has been converted to stars

6, and 63 have the same redshift
dependence therefore at all epochs the
low-mass objects cool more efficiently

Gas density depends on radius, there is a
radius inside which the cooling time is less
than the Hubble time : this is called the
cooling radius

Outside of this radius, we do not expect gas cooling to be
efficient : the cooling radius moves out with time.



Baryonic gas in dark matter 
halos

STAR FORMATION

Star formation happens in the cool gas which accumulates
at the center of the potential well.

Continuous input to the reservoir of cold gas as the warm
gas at the virial temperature in the halo cools at a rate :

̇Æ,,:,, ≈ ∫ 4AC'
?&'2&'Λ +
3
2 FE(+m

3C

û)fraction of gas remaining hot 
at any time at a given radius.

Accreting gas settles into a disc (conservation of angular
momentum).

Disc forms stars, when its surface density is :

n >
Ñ:-
+`

i.e. Q<1



The galaxy luminosity function 
and galaxy populations
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Stefanon et al. (2021)
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The Press-Schechter mass function

4 ∼ −1;−2

By comparing the LF and the MF we clearly see that, if we
assume a constant mass-to-light ratio, we require m = 3
However, the Harrison-Zeldovich spectrum has m = 1



The galaxy luminosity function 
and galaxy populations

The problem is even worst :
• Cooling is very efficient in the low mass halos

̅6,
ƒC

= 6.4×10#"
Æm

10#'Æ⊙
1 + (5

1!/'

For halos not much less massive than that of the Milky
Way the cooling time is less than the Hubble time.

Low mass halos should have processed all of the gas into
stars and have done so at early epochs

Steepen the luminosity function even further !



The galaxy luminosity function 
and galaxy populations

Also, high mass halos should still be gas rich and still actively
forming stars in all cases since the cooling time is long.

What we observe :
• Massive elliptical galaxies in the local universe with

little gas and evolved stellar population
• Many small irregular galaxies which are very gas rich

and still forming stars – we do observe dwarf
ellipticals but these do not dominate

It seems that our basic model has some
fundamental problem…or missing some
fundamental processes.



The galaxy luminosity function 
and galaxy populations

BUT there also some important successes of this model :
• The form of the luminosity function is correct

• The formation redshifts for objects of different mass are correct

• The cooling argument suggests a change in behaviour in mass of order the
mass of the Milky Way :
• This is approximately where the break in the luminosity function occurs.
• The star formation in higher-mass objects is suppressed due to longer

cooling times.

• Very massive halos form late and will have little cooling-observed clusters
have very hot extended gas in a single halo.



The galaxy luminosity function 
and galaxy populations

However, the following fundamental problems remain :

• Drastically different slope between halo mass function and galaxy mass function

• Massive elliptical galaxies are expected to be currently accreting gas and forming
stars while they are passive and gas poor (and with old stellar population)

• Low mass galaxies are expected to have processed most of their gas and now be
passive and gas poor, while they are gas rich and star forming

One key to solve these problems is : Feedback !



Feedback
Including supernovae feedback in our model helps in two ways :

• Energy input heats the gas in the disc suppressing star
formation

• Supernova-driven winds eject cold gas from the disc into
the halo : if the gas is expelled beyond the cooling radius
the feedback can halt star formation

A second process is also effective in suppressing star formation in
the lowest mass halos : the reionisation of the gas from photons
forming the UV background produced by star formation and AGN
activity



Feedback
More sophisticated models require numerical solution to follow the hot and cold gas

The process of halo growth is taken from
numerical N-body models. In fact the
basic build-up of the halos follows well
the predictions of Press-Schechter, but
the numerical approach includes the
sudden increases in virial mass and gas
which occurs as halos merge in the
hierarchical structure formation scenario

Halo structure is
modelled much as
we have described

Cooling and star
formation are modelled
as we have described

Sne feedback is
included by simply
heating and ejecting the
cold gas into the halo

Reionisation feedback is
also included

Recently, feedback from
AGN has also been
included as an additional
heating source.



Feedback



Evolution of the Star-Formation 
Rate Density 

Oesch et al. 2018



The first results from the JWST

Castellano et al. (2022)
Naidu et al. (2022)

z=12.22±0.15 z=11.42 z=10.94

Adams et al. (2022)

z=15.92±0.17

Atek et al. (2022)

z=15.2±0.21

Donnan et al. (2022)

z=16.39±0.27



The first results from the JWST

Donnan et al. 2023



Evolution of the Star-Formation 
Rate Density 

Bouwens et al. 2023





Comments and Conclusions

Riechers et al. (2013)

In this course we have discussed our current
understanding on structure formation in the
Universe, mostly based on advances made over the
past two decades.

Our model has several successes and leads to the
emergence of a consistent picture. However several
concerns arise with these models.

New telescopes (such as the E-ELT, the JWST,
EUCLID, etc…) whose main goals will be to address
all these questions will be commissioned within the
next decades.
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