
Gravitational collapse
Chapter 4 



Free-fall time
The free-fall time is the characteristic time that 
would take an object to collapse under its own 
gravity, if no other forces exist to oppose the 
collapse. 

We will first consider the collapse of a cloud 
within a galaxy, but this method applies also at 
larger scales (i.e., galactic scale)

INITIAL CONDITIONS OF THE COLLAPSE

• Cloud of radius R and mass M0

• Gas density 𝜌!
• Gas molecules initially at r0 will have a mass of 

gas M within the radius and during collapse this 
remains constant

External medium

R

V0, M0,𝜌!

P0

From Newton gravity the equation of motion is :
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Free-fall time
Multiplying  by $#

$%
and integrating over dt give :
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Integrating :
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Substituting u = r/r! gives :
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Therefore, the free-fall time is given by :
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Tabulated è *
"

The free-fall time depends on density : if the inner 
region of the cloud are denser, these will collapse 
firstè inside-out collapse



Inside-out collapse
Adding to the previous initial conditions that the cloud has an 
isothermal behavior. 

We also assume that there is a central sink for inflowing material 
(the growing central object: e.g., a protostar)

External medium

R

V0, M0,𝜌!

P0

The dynamic of the problem is governed by the Euler’s equation 
and the continuity equation (radial equations) :
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where 𝜌 = 𝜌 𝑟, 𝑡 and 

𝑀#(𝑡) = /
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Differentiating gives : $,"
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Divergence in 
spherical 
coordinates



Inside-out collapse
SIMILARITY ANALYSIS

In the previous equations we can identify : 

• The independent variables : 𝑟 and 𝑡
• The constants : 𝐺 and 𝑎+
• The variables : 𝜌 𝑟, 𝑡 , 𝑣 𝑟, 𝑡 and 𝑀(𝑟, 𝑡)

The only way to form a dimensionless length is : 
𝑥 =

𝑟
𝑎+𝑡

We are doing a similarity analysis; therefore, we are 
searching for solutions in the form :
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𝑚 𝑥 , 𝑎 𝑥 and 𝛽(𝑥) are dimensionless
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Inside-out collapse
SIMILARITY ANALYSIS

The equations we must solve are :
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The equations become : 
𝑚 = 𝑥"𝛼 𝑥 − 𝛽
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𝑑𝛼
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𝑥
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These equations must be solved numerically, but we can learn 
a lot from their form.



Inside-out collapse
SIMILARITY ANALYSIS

An exact solution is the singular isothermal  sphere, 
where we demonstrated that : 

M r! =
2𝑎+"𝑟!
𝐺

=
𝑎+- 𝑡
𝐺

2𝑥

then 𝑚 = 2𝑥, hence :
𝑚 = 2𝑥 = 𝑥"𝛼 𝑥 − 𝛽

or

𝛼 =
2

𝑥 𝑥 − 𝛽

and 𝛽 = / #,%
1%

. In the singular isothermal sphere, the 
system is in equilibrium (𝑣 𝑟, 𝑡 = 0) then 𝛽 = 0 and 

𝛼 =
2
𝑥"
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𝛼
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2
𝑥
𝑥 − 𝛽 𝑥 − 𝛽
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2
𝑥
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We are looking for solutions with the form :

𝑀# 𝑟, 𝑡 =
𝑎+- 𝑡
𝐺
𝑚(𝑥)

𝜌 𝑟, 𝑡 =
1

4𝜋𝐺𝑡"
𝛼 𝑥

𝑣 𝑟, 𝑡 = 𝑎+𝛽 𝑥



Inside-out collapse
SIMILARITY ANALYSIS

Another singular solution is given by :
𝑥 − 𝛽 = 1

𝛼 =
2
𝑥

𝑚 = 𝑥"𝛼 𝑥 − 𝛽

𝑥 − 𝛽 " − 1
1
𝛼
𝑑𝛼
𝑑𝑥

= 𝛼 −
2
𝑥
𝑥 − 𝛽 𝑥 − 𝛽
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𝑑𝛽
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= 𝛼 𝑥 − 𝛽 −
2
𝑥
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We are looking for solutions with the form :

𝑀# 𝑟, 𝑡 =
𝑎+- 𝑡
𝐺
𝑚(𝑥)

𝜌 𝑟, 𝑡 =
1

4𝜋𝐺𝑡"
𝛼 𝑥

𝑣 𝑟, 𝑡 = 𝑎+𝛽 𝑥

𝑥 = 1 is the crucial transition point :

• At 𝑥 > 1: the solution is the singular isothermal sphere

• At 𝑥 < 1 : then 𝛽 < 0, hence 𝑣 𝑟, 𝑡 < 0è infall

The transition critical point between infall and static 
isothermal solution  (𝑥2 = 1) translates into 𝑟2 = 𝑎+𝑡

This is a wave moving outwards 
at the sound speed 𝑎+



Inside-out collapse

collapse

static

Collapse front
expanding
outwards



Inside-out collapse
To do the previous analysis, we assumed that :

• The system is the equilibrium isothermal sphere

• The boundary conditions are those for that initial state

• There is a sink for matter reaching the origin : this will
turn into a protostar

Another interesting case to consider is that of a cloud
which is marginally unstable, for example with a mass
slightly larger than the Bonnor-Ebert mass. We then
perturbate the system and follow the evolution.

Example of numerical solution : velocity during the 
collapse of an isothermal sphere with mass slightly 
above the Bonnor-Ebert mass

𝜏=0 : start of the creation of the protostar as mass starts
to flow into the sink

𝑥 =
𝑟
𝑎+𝑡



Physics Analysis
The transition point moves outwards as a rarefaction 
wave with only the gas inside of the radius 𝑅)) ≈ 𝑎+𝑡
moving inward.

After a short fraction of a free-fall time a large fraction 
of the gas within this radius is moving supersonically 
with the velocity increasing to the centre : 

𝑟/ 𝑣 is less than the sound crossing time.

Gas is falling onto a growing central object, the 
protostar, with a mass 𝑀∗ :

- close to this protostar, gas is approximately 
in free fall

- 𝑣)) ≈
"4,∗
#

'/"

At the transition point, the gas moves approximately 
sonically :

- 𝑣)) ≈ 𝑎+
-𝑎+"~ 𝑀∗𝐺/𝑅))

collapse

static

Collapse front
expanding
outwards

1
2
𝑣))" =

𝐺𝑀
𝑟

𝑟 = 𝑎+𝑡



Physics Analysis
The rate of growth of 𝑀∗ is determined by accretion at 
a rate : 

𝑑𝑀
𝑑𝑡

= lim
#→!

−4𝜋𝑟"𝑣𝜌

Assuming constant accretion rate 𝑀∗ =
6,
6%
𝑡 and 

𝑑𝑀∗

𝑑𝑡
≈
𝑀∗

𝑡
≈
𝑎+"

𝐺
𝑅))
𝑡
≈
𝑎+-

𝐺

𝑅)) ≈ 𝑎+𝑡

Inserting values, the accretion rate for the growth of the 
protostar is :

𝑑𝑀∗
𝑑𝑡 ≈ 2×10"#

𝑇
10𝐾

$
%
𝑀⊙ 𝑦𝑟"'

The density profile in the collapse region must satisfy : 

𝜌 =
�̇�

4𝜋𝑟" 𝑣
=

�̇�
4𝜋𝑟"𝑣))

=
�̇�

4𝜋𝑟-/" 2𝐺𝑀∗

collapse

static

Collapse front
expanding
outwards

𝑎+"~ 𝑀∗𝐺/𝑅))

𝑎+" =
𝑘7𝑇
𝜇



Physics Analysis
Isothermal sphere
~𝑟"#

Evolution of the density 
profile with time

Since the Jean Mass is 𝑀8 ∝ 𝜌9'/"inner 
regions have smaller Jeans Mass
è smaller regions will collapse into smaller 

sub-clumps
è fragmentation 

𝜌 𝑟 =
𝑎+"

2𝜋𝐺𝑟" 𝜌 =
�̇�

4𝜋𝑟-/" 2𝐺𝑀∗

Free fall region
~𝑟"$/#

Isothermal sphere
~𝑟"#

The collapse starts at t=0

Free fall region
~𝑟"$/#

Isothermal sphere
~𝑟"#



Summary of the formation of 
structures in the Universe

Gas clouds with multi-phases

dense regions  Low-density regions  
fast cooling

collapse

Gas clouds Gas clouds Gas clouds

Heating of 
collapsing gas

Protostar Protostar Protostar The first part of this course will be to describe the
processes responsible for the cooling of the gas, the
heating of the gas and the formation of protostars.

FROM THE FIRST LECTURE

𝑡'' =
3𝜋

32𝐺𝜌(

)/$

𝑀*
𝑀⨀

= 1.0×
𝑇
10𝐾

$/%

×
𝑛-

2×10'.𝑚"$

"'/%

collapse

static

Collapse front
expanding
outwards



Summary of Monday’s lecture

𝑡)) =
3𝜋

32𝐺𝜌!

'/"

We defined the free-fall time as the characteristic time 
that would take an object to collapse under its own gravity

Only depends on the density, suggesting 
that denser region will collapse first 
è inside-out collapse

𝜌 𝑟 =
𝑎+"

2𝜋𝐺𝑟"



Summary of Monday’s lecture

External medium

R

V0, M0,𝜌!

P0 𝑑𝑣
𝑑𝑡
+ 𝑣

𝑑𝑣
𝑑𝑟

= −
𝑎+"

𝜌
𝑑𝜌
𝑑𝑟

−
𝐺𝑀#

𝑟"

𝑑𝜌
𝑑𝑡
+
1
𝑟"
𝑑(𝑟"𝜌𝑣)
𝑑𝑟

= 0

We studied the case of a collapsing gas cloud 
with a sink at the center for the inflowing 
material, and do a similarity analysis to solve 
the Euler’s and continuity equations 

𝑚 = 𝑥"𝛼 𝑥 − 𝛽

𝑥 − 𝛽 " − 1
1
𝛼
𝑑𝛼
𝑑𝑥

= 𝛼 −
2
𝑥
𝑥 − 𝛽 𝑥 − 𝛽

𝑥 − 𝛽 " − 1
𝑑𝛽
𝑑𝑥

= 𝛼 𝑥 − 𝛽 −
2
𝑥
(𝑥 − 𝛽)

We were looking for 
solutions with the form :

𝑀/ 𝑟, 𝑡 =
𝑎0$ 𝑡
𝐺
𝑚(𝑥)

𝜌 𝑟, 𝑡 =
1

4𝜋𝐺𝑡%
𝛼 𝑥

𝑣 𝑟, 𝑡 = 𝑎0𝛽 𝑥

𝑥 =
𝑟
𝑎+𝑡

Dimensionless variable  



Summary of Monday’s lecture

External medium

R

V0, M0,𝜌!

P0

One exact solution of previous solution is the 
isothermal sphere, for which we found : 

M r! =
2𝑎+"𝑟!
𝐺

=
𝑎+- 𝑡
𝐺
2𝑥 𝑀# 𝑟, 𝑡 =

𝑎+- 𝑡
𝐺
𝑚(𝑥)

𝑥 =
𝑟
𝑎+𝑡 𝑚 𝑥 = 2𝑥

𝑚(𝑥) = 𝑥"𝛼 𝑥 − 𝛽 𝛼 =
2

𝑥 𝑥 − 𝛽

We also defined : 𝑣 𝑟, 𝑡 = 𝑎+𝛽 𝑥

In the case of the singular 
isothermal sphere, the system is in 
equilibrium : 𝑣 𝑟, 𝑡 = 0 → 𝛽 = 0

𝛼 =
2
𝑥"

𝜌 𝑟, 𝑡 = '
"*4%+.+

= 1%
+

"*4#+



Summary of Monday’s lecture

External medium

R

V0, M0,𝜌!

P0

Another singular solution is 
obtained when 𝑥 − 𝛽 = 1

𝑚 = 𝑥"𝛼 𝑥 − 𝛽

𝑥 − 𝛽 " − 1
1
𝛼
𝑑𝛼
𝑑𝑥

= 𝛼 −
2
𝑥
𝑥 − 𝛽 𝑥 − 𝛽

𝑥 − 𝛽 " − 1
𝑑𝛽
𝑑𝑥

= 𝛼 𝑥 − 𝛽 −
2
𝑥
(𝑥 − 𝛽)

𝑥 =
𝑟
𝑎+𝑡

There is a transition point when 
𝑥 = 1 (i.e. when 𝑟 = 𝑎+𝑡)

𝑥 > 1𝑥 <
1

𝑎+𝑡 > 𝑟
then 𝛽 < 0

=> Infall

𝑎+𝑡 < 𝑟
then 𝛽 > 0

=> Isothermal sphere 



Summary of Monday’s lecture

collapse

static

Collapse front
expanding
outwards

𝑥 =
𝑟
𝑎+𝑡


