
Gravitational stability 
and instability
Chapter 3



Equations of hydrodynamics 
and hydrostatic equilibrium

Euler’s equation governs adiabatic and inviscid flow :

𝜌
𝑑𝑣⃗
𝑑𝑡

+ 𝜌(𝑣 ( ∇)𝑣⃗ = −∇𝑃 − 𝜌∇Φ!

Density of 
the fluid

Flow 
velocity

Pressure Gravitational 
Potential

In equilibrium 𝑣 = 0 , then : 
−∇𝑃 − 𝜌∇Φ! = 0

Poisson’s equation gives the gravitational potential :

∇"Φ! = 4𝜋𝐺𝜌

The equation of state for an ideal gas gives the 
pressure :

𝑃 =
𝜌𝑘#𝑇
𝜇

TOOLBOX FOR THIS CHAPTER

The equation of continuity

𝑑𝜌
𝑑𝑡
+ ∇. 𝜌𝑣 = 0

We also need an equation describing the energy flux 
but if we use the general form, we will not be able 
to solve the equations analytically. Approximations 
are needed !



The isothermal sphere
The simplest model in which pressure and gravity 
allow stable configuration is the isothermal sphere.

In this model, we assume : 
- a spherical symmetry 
- a gas at a uniform temperature T
- the equation of state given by : 𝑃 = 𝜌 $!%

&
= 𝑎%"𝜌

where 𝑎%" is the isothermal sound speed. 

In spherical coordinates (𝑟, 𝜃, φ), the gradient is 
given by : 

∇𝑓 =
𝜕𝑓
𝑑𝑟
𝑟 +

1
𝑟
𝜕𝑓
𝑑𝜃

𝜃 +
1

𝑟 sin 𝜃
𝜕𝑓
𝑑φ

φ

In spherical coordinates (𝑟, 𝜃, φ), the Laplace operator is given by : 

Δ𝑓 = ∇"𝑓 =
1
𝑟"

𝜕
𝜕𝑟

𝑟"
𝜕𝑓
𝜕𝑟

+
1

𝑟" sin 𝜃
𝜕
𝜕𝜃

sin 𝜃
𝜕𝑓
𝑑𝜃

+
1

𝑟" sin" 𝜃
𝜕"𝑓
𝜕𝜑"

The gravitational potential and the pressure are only 
function of the radius 𝑟, then the Euler’s equation can 
be written as :

−
1
𝜌
𝑑𝑃
𝑑𝑟

−
𝑑Φ!
𝑑𝑟

= 0

and the Poisson’s equation : 
1
𝑟"

𝑑
𝑑𝑟
𝑟"
𝑑Φ!
𝑑𝑟

= 4𝜋𝐺𝜌

𝜌
𝑑𝑣⃗
𝑑𝑡

+ 𝜌(𝑣 ( ∇)𝑣⃗ = −∇𝑃 − 𝜌∇Φ!

0 0

Hydrostatic 
equilibrium 

(𝑣 = 0)

∇"Φ! = 4𝜋𝐺𝜌



The isothermal sphere
SINGULAR ISOTHERMAL SPHERE

In the following we assume an isolated single isothermal 
sphere, and we will try to get the solution (pressure, 
mass, radius)

The gravitational force is given by : 

−𝜌∇Φ! = −
𝐺𝑀𝜌
𝑟"

Then, from the Euler’s equation we get : 
𝑑𝑃
𝑑𝑟

= −
𝐺𝑀𝜌
𝑟"

where the mass 𝑀, is the mass within a radius 𝑟 :

𝑀 = 𝑀 𝑟 = ∫'
( 𝜌 𝑟) 4𝜋𝑟)"𝑑𝑟)

The equation of state (𝑃 = 𝜌 $!%
&
= 𝑎%"𝜌) can be 

written as : 
𝑑𝜌
𝑑𝑟

= −
𝐺𝑀
𝑎%"

𝜌
𝑟"

Then : 

𝑟"
1
𝜌
𝑑𝜌
𝑑𝑟

= −
𝐺𝑀
𝑎%"

Taking the radius derivative gives :
𝑑
𝑑𝑟

𝑟"
𝑑 ln 𝜌
𝑑𝑟

= −
𝐺
𝑎%"
𝑑𝑀
𝑑𝑟

with *+
*(
= 4𝜋𝑟"𝜌, then 

𝑑
𝑑𝑟

𝑟"
𝑑 ln 𝜌
𝑑𝑟

= −
𝐺
𝑎%"
4𝜋𝑟"𝜌

The exact solution of this equation is : 

𝜌 𝑟 =
𝑎%"

2𝜋𝐺𝑟"

−
1
𝜌
𝑑𝑃
𝑑𝑟

−
𝑑Φ!
𝑑𝑟

= 0

𝑑 ln 𝜌
𝑑𝑟



The isothermal sphere
SINGULAR ISOTHERMAL SPHERE

From the previous equation, we can determine :

• The total mass of the cloud 

M r' = J
'

(" 𝑎%"

2𝜋𝐺𝑟"
4𝜋𝑟"𝑑𝑟 =

2𝑎%"𝑟'
𝐺

• In equilibrium, there must be an external pressure 
equaling the pressure at the surface of the cloud :  

𝑃' = 𝑎%"𝜌 𝑟' =
𝑎%,

2𝜋𝐺𝑟'"

• The cloud radius and isothermal sound speed can be 
estimated from the Mass and external pressure 

• Although the density and pressure diverge at 𝑟 → 0, 
the total mass, internal energy, etc.. are bounded

𝜌 𝑟 =
𝑎%"

2𝜋𝐺𝑟"

𝑀 𝑟 = J
'

(
𝜌 𝑟) 4𝜋𝑟)"𝑑𝑟)

Singular sphere because the density 
and pressure diverge at r=0



The isothermal sphere
SINGULAR ISOTHERMAL SPHERE

In the following we assume an isolated single isothermal 
sphere, and we will try to get the solution (pressure, 
mass, radius)

The gravitational force is given by : 
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&
= 𝑎%"𝜌) can be 

written as : 
𝑑𝜌
𝑑𝑟

= −
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𝜌
𝑟"

Then : 

𝑟"
1
𝜌
𝑑𝜌
𝑑𝑟

= −
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𝑎%"
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𝑑
𝑑𝑟
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𝐺
𝑎%"
𝑑𝑀
𝑑𝑟
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𝑑
𝑑𝑟

𝑟"
𝑑 ln 𝜌
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𝐺
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𝑑Φ!
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𝑑 ln 𝜌
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The isothermal sphere
SINGULAR ISOTHERMAL SPHERE

From the previous equation, we can determine :

• The total mass of the cloud 

M r' = J
'

(" 𝑎%"

2𝜋𝐺𝑟"
4𝜋𝑟"𝑑𝑟 =

2𝑎%"𝑟'
𝐺

• In equilibrium, there must be an external pressure 
equaling the pressure at the surface of the cloud :  

𝑃' = 𝑎%"𝜌 𝑟' =
𝑎%,

2𝜋𝐺𝑟'"

• The cloud radius and isothermal sound speed can be 
estimated from the Mass and external pressure 

• Although the density and pressure diverge at 𝑟 → 0, 
the total mass, internal energy, etc.. are bounded

𝜌 𝑟 =
𝑎%"

2𝜋𝐺𝑟"

𝑀 𝑟 = J
'

(
𝜌 𝑟) 4𝜋𝑟)"𝑑𝑟)

Singular sphere because the density 
and pressure diverge at r=0



Summary of the isothermal 
sphere

Singular Isothermal sphere  
T=cst

𝜌
𝑑𝑣⃗
𝑑𝑡

+ 𝜌(𝑣 ( ∇)𝑣⃗ = −∇𝑃 − 𝜌∇Φ!

1
𝑟"

𝑑
𝑑𝑟
𝑟"
𝑑Φ!
𝑑𝑟

= 4𝜋𝐺𝜌−
1
𝜌
𝑑𝑃
𝑑𝑟

−
𝑑Φ!
𝑑𝑟

= 0

∇"Φ! = 4𝜋𝐺𝜌

Hydrostatic equilibrium
Spherical coordinates

Hydrostatic equilibrium
Spherical coordinatesr0

V0 , P0

𝜌 𝑟 =
𝑎%"

2𝜋𝐺𝑟"
𝑃' = 𝑎%"𝜌 𝑟' =

𝑎%,

2𝜋𝐺𝑟'"

These solutions (𝜌 𝑟 and P 𝑟 ) diverge at 𝑟 → 0
Good description of the problem when 𝑟 ≫ 0



The isothermal sphere
GENERAL SOLUTION

The Euler’s equation gives : 

−
1
𝜌
𝑑𝑃
𝑑𝑟

−
𝑑Φ!
𝑑𝑟

= 0

with 𝑃 = 𝑎%"𝜌, then :

−
𝑎%"

𝜌
𝑑𝜌
𝑑𝑟

=
𝑑Φ!
𝑑𝑟

Integrating gives :

− ln 𝜌 =
Φ!
𝑎%"

+ 𝑐𝑠𝑡𝑒

Or : 

𝜌 𝑟 = 𝜌- exp −
Φ! 𝑟
𝑎%"

To simplify the analysis, we need to introduce 
dimensionless variables : 

𝜓 =
Φ!
𝑎%"

𝑎𝑛𝑑 𝜉 =
4𝜋𝐺𝜌-
𝑎%"

./"

𝑟

The the Poisson’s equation becomes :
1
𝜉"

𝑑
𝑑𝜉
𝜉"
𝑑𝜓
𝑑𝜉

= 𝑒01

The solution of previous equation is : 

𝜓 = ln
𝜉"

2

𝜌- = 𝜌 𝑟 = 0 ≠ 0

∇"Φ! = 4𝜋𝐺𝜌



The isothermal sphere
GENERAL SOLUTION

The boundary solutions we can assume are :

- No gravitational force at the center of the cloud :
𝑑𝜓
𝑑𝜉 23'

= 0

- The density at the center of the cloud must be 
𝜌- , then 𝜓 𝜉 = 0 = 0

No analytical solution, equation must be 
integrated numerically. 

However, we can estimate the total mass of the 
cloud : 

𝑀 𝑟' = J
'

("
𝜌4𝜋𝑟"𝑑𝑟

Introducing the dimensionless variables gives :

𝑀 𝑟' = 4𝜋𝜌-
𝑎%"

4𝜋𝐺𝜌-

4/"

J
'

2"
𝑒01𝜉"𝑑𝜉

Then : 

𝑀 𝑟' = 4𝜋𝜌-
𝑎%"

4𝜋𝐺𝜌-

4
"
𝜉"
𝑑𝜓
𝑑𝜉 232"

There is one more parameter compared to the 
singular solution : 𝜌- , and we need to also specify 
𝑎%" , 𝑟'



The isothermal sphere
GENERAL SOLUTION

We can also study the mass of the cloud as a 
function of the density contrast defined as 
𝜌-/𝜌' , where 𝜌' = 𝜌 𝑟'

di
m

en
sio

nl
es

s c
lo

ud
 m

as
s  

  𝑚
=
𝑝 '# $
𝐺
% $
𝑀
/𝑎

%,

There is a maximum cloud mass (𝑚.) for 
which equilibrium can be reached. 



The polytropic sphere

The equation state of the polytropic sphere is : 
𝑃 = Κ𝜌.5

.
6 = Κ𝜌7

where 𝑛 is the polytropic index :

- n=0 for rocky planets
- n=1.5 for star cores 

For the general polytropic case, we will 
demonstrate in problem sheet that the 
temperature always follows the gravitational 
potential : 

𝑘#𝑇 =
1 − Γ
Γ

𝜇Φ!



Virial equilibrium for the self-
gravitating sphere

External medium

r 0

V0, M0

P0

P0

In the following, we will test if the solutions we find for the isothermal 
sphere are stable. 

The equations of hydrostatic equilibrium are :
𝑑𝑃
𝑑𝑟

= −
𝐺𝑀𝜌
𝑟"

and 
𝑑𝑀
𝑑𝑟

= 4𝜋𝑟"𝜌

To simplify, we will consider the mass as an independent variable, such 
as : 𝑑𝑟 = *+

,8($9
, then: 

4𝜋𝑟4𝑑𝑃 = −4𝜋𝑟 𝐺𝑀𝜌𝑑𝑟 = −
𝐺𝑀
𝑟
𝑑𝑀

J
:3',<3<&

:3:" ,<3<"
3𝑉 𝑑𝑃 = − J

'

+" 𝐺𝑀
𝑟
𝑑𝑀



Virial equilibrium for the self-
gravitating sphere

External medium

r 0

V0, M0

P0

P0

To solve the previous equation, we need to integrate by part :

J
=

>
𝑢 𝑥 𝑣) 𝑥 𝑑𝑥 = 𝑢 𝑥 𝑣 𝑥 =

> − J
=

>
𝑢) 𝑥 𝑣 𝑥

Therefore, we obtain : 

3 𝑃𝑉 ',<&
:" ,<" − 3J

',<&

:" ,<"
𝑃𝑑𝑉 = −J

'

+" 𝐺𝑀
𝑟
𝑑𝑀

3𝑃'𝑉' = 4𝜋𝑟'4𝑃'
Gravitational 
potential (Ω)

3J
'

+" 𝑃
𝜌
𝑑𝑀 + Ω = 4𝜋𝑟'4𝑃'

Equation of virial equilibrium

J
:3',<3<&

:3:" ,<3<"
3𝑉 𝑑𝑃 = − J

'

+" 𝐺𝑀
𝑟
𝑑𝑀



Stability of an isothermal cloud

For an isothermal sphere, we know that : 𝑃 = 𝑎%"𝜌, hence :

3J
'

+" 𝑃
𝜌
𝑑𝑀 = 3𝑎%"𝑀' = 3

𝑘#𝑇
𝜇

𝑀'

We also know that :

Ω = −
3
5
𝐺𝑀'

"

𝑟'
Then the virial equilibrium equation for an isothermal cloud becomes :

3
𝑘#𝑇
𝜇

𝑀' −
3
5
𝐺𝑀'

"

𝑟'
− 4𝜋𝑟'4𝑃' = 0

Associated with 
thermal pressure

Associated with 
gravity 

Associated with 
external pressure

Stability conditions

- If =0 è equilibrium
- If <0 è external pressure and gravity are 

“stronger” than thermal pressure : the cloud is 
collapsing

- If >0 è the thermal pressure is larger than 
external pressure and gravity : the cloud is 
expanding. 

3J
'

+" 𝑃
𝜌
𝑑𝑀 + Ω = 4𝜋𝑟'4𝑃'



Stability of an isothermal cloud

The external pressure 𝑃' is given by : 

𝑃'(𝑟) =
3𝑘#𝑇𝑀'

4𝜋𝑟4𝜇
−

3
20𝜋

𝐺𝑀'
"

𝑟,

The maximum of this function is given by :
𝑑𝑃' 𝑟
𝑑𝑟

= 𝑟?=@ =
4
15
𝐺𝑀'

"𝜇
𝑘#𝑇

with a maximum pressure of : 

𝑃?=@ = 𝑐!
𝑘#𝑇
𝜇

, 1
𝐺4𝑀'

"

rmax

Stability of the cloud of mass 𝑀' and with 𝑟 > 𝑟?=@ : 

- If the external pressure is increased by a small amount, the system will lie above the equilibrium line, then the virial 
equation shows that the cloud must shrink.  

- If the external pressure 𝑃' > 𝑃?=@ the cloud is not stable and can’t find any radius at which it will be in equilibrium : the 
cloud is collapsing. 



Stability of an isothermal cloud
For a given external pressure, a cloud will become 
unstable to collapse when its mass exceeds :

𝑀 = 𝑐!
./" $!%

&

" .

A%/$B"
#/$ = 𝑐!

./" =(
%

9"
#/$A%/$

Consider a cloud with a given 𝜌-/𝜌', if we increase the 
external pressure then :

- The dimensionless mass will increase (𝑚 = 𝑝'
#
$𝐺

%
$𝑀/𝑎%, ) 

- For stability the internal pressure of the cloud must 
increase

- But at constant T, this requires 𝜌 in the cloud to 
increase and hence 𝜌-

Bonnor-Ebert mass

di
m

en
sio

nl
es

s c
lo

ud
 m

as
s  

  𝑚
=
𝑝 '# $
𝐺
% $
𝑀
/𝑎

%,

𝜌-
𝜌' ?=@

≈ 14.1

𝑚. ≈ 1.18

𝑃!"# = 𝑐$
𝑘%𝑇
𝜇

& 1
𝐺'𝑀(

)



Jeans instability 

Initial conditions of the system (the fluid is stationary) : 
• 𝑣) = 0
• 𝜌) = 𝑐𝑠𝑡𝑒
• 𝑃) = 𝑐𝑠𝑡𝑒

PERTURBATION ANALYSIS OF 
FLUID EQUATIONS

Introducing perturbed quantities : 
• 𝜌 = 𝜌) + 𝜌*
• 𝑣 = 𝑣) + 𝑣*
• Φ+ = Φ) +Φ*

• 𝑃 = 𝑃) + 𝑃*

As previously, the unperturbed potential is assumed to 
satisfy :

∇"Φ' = 4𝜋𝐺𝜌'

There is no solution when 𝜌' = 𝑐𝑠𝑡𝑒

The equation of continuity given by : 
𝑑𝜌
𝑑𝑡

+ ∇. 𝜌𝑣 = 0

becomes (to first order):

𝜌* ∇. 𝑣+ = −
𝜕𝜌+
𝜕𝑡

Similarly, the other hydrostatic equations (Euler’s & Poisson’s) 
become : 

𝜕𝑣+
𝜕𝑡

= −∇𝜙+ −
1
𝜌*
∇𝑃+

And 
∇,𝜙+ = 4𝜋𝐺 𝜌+

We also assume isothermal behaviour such as :
𝑃. = 𝑎%"𝜌.

𝜌
𝑑𝑣⃗
𝑑𝑡

+ 𝜌(𝑣 ( ∇)𝑣⃗ = −∇𝑃 − 𝜌∇Φ!

∇"Φ! = 4𝜋𝐺𝜌



Jeans instability 

Differentiating the continuity equation with respect to 
time, we obtain : 

𝜕
𝜕𝑡

∇. 𝑣. = −
1
𝜌'
𝜕"𝜌.
𝜕𝑡"

Taking the divergence of the Euler equation :
𝜕
𝜕𝑡

∇. 𝑣. = −∇"𝜙. −
𝑎%"

𝜌'
∇"𝜌.

PERTURBATION ANALYSIS OF 
FLUID EQUATIONS

Combining the two previous equation gives :

∇" −
1
𝑎%"

𝜕"

𝜕𝑡"
+
4𝜋𝐺𝜌'
𝑎%"

𝜌. = 0

similar to the wave equation !

Therefore, we should look for wave-like solutions of the form :
𝜌. ∝ 𝑒C $.(⃗0FG

which gives a dispersion relation :
𝑎%"𝑘" − 𝜔" = 4𝜋𝐺𝜌'

The system is unstable when the modes grow (i.e. 𝜔" < 0). 
Hence we can define a critical wave number (when 𝜔" = 0) : 

𝑘H" =
4𝜋𝐺𝜌'
𝑎%"

=
4𝜋𝐺𝜇
𝑘#𝑇

𝜌'

And a characteristic wavelength :

𝜆I =
2𝜋
𝑘H

𝜌' ∇. 𝑣. = −
𝜕𝜌.
𝜕𝑡

𝜕𝑣.
𝜕𝑡

= −∇𝜙. −
1
𝜌'
∇𝑃.



Jeans instability 

The total mass within a sphere of diameter equal to 
the Jeans wavelength 𝜆H is :

𝑀I =
4
3
𝜋

𝜆H
2

4

𝜌'

Moreover : 

𝜆I" =
2𝜋
𝑘H

"

=
𝜋𝑘#𝑇
𝐺𝜇𝜌'

Then : 
𝜆I
2
=

3
𝜋"
𝐺𝑀I𝜇
𝑘#𝑇

PERTURBATION ANALYSIS OF 
FLUID EQUATIONS

For 𝜆 > 𝜆I or 𝑀 > 𝑀I the modes grow exponentially : the cloud 
is collapsing 

The Jeans Mass is the mass above which gravity dominates. 

The Jeans mass is usually defined as : 
𝑀I

𝑀⨀
= 1.0×

𝑇
10𝐾

4/"

×
𝑛K

2×10.'𝑚04

0./"

Strong dependance 
on temperature

Importance of cooling which
could reduce the temperature
and therefore allow the
collapse of less massive clouds



Jeans instability 
PERTURBATION ANALYSIS OF 

FLUID EQUATIONS

In the early Universe, the absence of metals and dust (not 
enough time to form ) and the much reduced molecular gas 
content implies very poor cooling 

Formation of massive stars in the early Universe



Magnetic fields

Magnetic fields are important components of the ISM : these can 
provide additional forces which can act to stabilise clouds against 
gravitational collapse. 

The derivation of the Euler equation in the case of magnetic 
fields is complex. We will just give the solution of the Euler 
equation :

𝑃' =
3𝑘#𝑇𝑀'

4𝜋𝑟'4𝜇
+

1
4𝜋𝑟',

𝛽
Φ+
"

2𝜇'
−
3
5
𝐺𝑀'

"

Thermal 
Pressure

Magnetic 
pressure

Gravity

The pressure will be a monotonically decreasing 
function of r if :

𝛽
Φ+
"

2𝜇'
>
3
5
𝐺𝑀'

"

The clouds will always be stable if Φ+ is a 
constant. 



Application to molecular clouds
Giant Molecular Clouds can be seen as swarms of more 
coherent clumps. 
The Jeans mass for gas with 𝑛K~2000 and 𝑇~10𝐾 is 
𝑀I~3𝑀⨀. This is well below the observed masses of the 
individual clouds and of order the mass of typical dense 
cores. 
è There must be an additional form of support : the 
magnetic pressure.

Zeeman splitting provides a method for measuring the 
magnetic fields in clouds, although this has only be 
successful in a handful of dark clouds. 

From the magnetic virial equation we can find the 
maximum cloud mass which could be supported against 
its own self-gravity by magnetic pressure alone :

𝑀" =
5
3𝐺

𝛽
𝜋"𝑟,𝐵"

2𝜇'



Application to molecular clouds
Then :

𝑀 ≈
𝐵
𝑛𝑇

𝑟
𝑝𝑐

"
𝑀⨀

Inserting typical values for several cloud types, we can show that most dark clouds can 
be stabilised by magnetic effects :

• For dense cores 𝑀~𝑀I

• The density ratio is measured to 𝜌-/𝜌'~10

Cloud type ntot
[106m-3]

L 
[pc]

T
[K]

M
[𝑴⨀]

B 
[nT]

Giant Molecular Cloud 100 50-500 15 105 1 ?

Dark Cloud Complex 500 10 10 104 1 ?

Individual Dark Cloud 103 2 10 30 2-10

Dense Core 104 0.1 10 10 2-10



Summary of yesterday’s lecture
Singular Isothermal sphere  

T=cst
𝜌
𝑑𝑣⃗
𝑑𝑡

+ 𝜌(𝑣 ( ∇)𝑣⃗ = −∇𝑃 − 𝜌∇Φ!

1
𝑟"

𝑑
𝑑𝑟
𝑟"
𝑑Φ!
𝑑𝑟

= 4𝜋𝐺𝜌−
1
𝜌
𝑑𝑃
𝑑𝑟

−
𝑑Φ!
𝑑𝑟

= 0

∇"Φ! = 4𝜋𝐺𝜌

Hydrostatic equilibrium
Spherical coordinates

Hydrostatic equilibrium
Spherical coordinatesr0

V0 , P0

𝜌 𝑟 =
𝑎%"

2𝜋𝐺𝑟"
𝑃' = 𝑎%"𝜌 𝑟' =

𝑎%,

2𝜋𝐺𝑟'"

These solutions (𝜌 𝑟 and P 𝑟 ) diverge at 𝑟 → 0
Good description of the problem when 𝑟 ≫ 0



Summary of yesterday’s lecture
Isothermal sphere  
General Solution

r0

V0 , P0

𝜌 𝑟 = 𝜌- exp −
Φ! 𝑟
𝑎%"

𝜌- = 𝜌 𝑟 = 0 ≠ 0

𝜓 =
Φ!
𝑎%"

𝑎𝑛𝑑 𝜉 =
4𝜋𝐺𝜌-
𝑎%"

./"

𝑟

1
𝜉"

𝑑
𝑑𝜉
𝜉"
𝑑𝜓
𝑑𝜉

= 𝑒01

Introducing dimensionless variables

Euler’s equation

𝑀 𝑟' = 4𝜋𝜌-
𝑎%"

4𝜋𝐺𝜌-

4
"
𝜉"
𝑑𝜓
𝑑𝜉 232"

No analytical solutions ;
numerical integration needed 

M r' =
2𝑎%"𝑟'
𝐺

Comparing with the mass expression 
obtained from the singular isothermal 
sphere analysis, we see that one more 
parameter is needed 𝜌,

di
m

en
sio

nl
es

s c
lo

ud
 m

as
s  

  𝑚
=
𝑝 !! " 𝐺

# " 𝑀
/𝑎

"#

𝜌-
𝜌' ?=@

≈ 14.1



Summary of yesterday’s lecture

Stability of a gas cloud

r0

V0 , P0

3
𝑘#𝑇
𝜇

𝑀' −
3
5
𝐺𝑀'

"

𝑟'
− 4𝜋𝑟'4𝑃' = 0

Virial equation for a spherical gas cloud

Associated with 
thermal pressure

Associated 
with gravity 

Associated with 
external pressure

- If =0 è equilibrium

- If <0 è the cloud is collapsing

- If >0 è the cloud is expanding. 

𝑃'(𝑟) =
3𝑘#𝑇𝑀'

4𝜋𝑟4𝜇
−

3
20𝜋

𝐺𝑀'
"

𝑟,

Evolution of the pressure

rmax



Summary of yesterday’s lecture

𝜌 = 𝜌' + 𝜌.
𝑣 = 𝑣' + 𝑣.
Φ! = Φ' + Φ.
𝑃 = 𝑃' + 𝑃.

Jeans Instability 
Introducing perturbed quantities 

𝜌
𝑑𝑣⃗
𝑑𝑡

+ 𝜌(𝑣 ( ∇)𝑣⃗ = −∇𝑃 − 𝜌∇Φ!

∇"Φ! = 4𝜋𝐺𝜌𝑑𝜌
𝑑𝑡
+ ∇. 𝜌𝑣 = 0

𝜌' ∇. 𝑣. = −
𝜕𝜌.
𝜕𝑡

𝜕𝑣.
𝜕𝑡

= −∇𝜙. −
1
𝜌'
∇𝑃.

∇"𝜙. = 4𝜋𝐺 𝜌.

Only keeping first order terms

∇" −
1
𝑎%"

𝜕"

𝜕𝑡"
+
4𝜋𝐺𝜌'
𝑎%"

𝜌. = 0
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∇" −
1
𝑎%"

𝜕"

𝜕𝑡"
+
4𝜋𝐺𝜌'
𝑎%"

𝜌. = 0

Wave equation 

𝜌. ∝ 𝑒C $.(⃗0FG
Form of the solution

𝑎%"𝑘" − 𝜔" = 4𝜋𝐺𝜌'

Dispersio
n equation

𝑘H" =
4𝜋𝐺𝜌'
𝑎%"

=
4𝜋𝐺𝜇
𝑘#𝑇

𝜌'

Cr
iti

ca
l 

W
av

e 
N

um
be

r

𝜔 = 0

Characteristic 

W
avelength 

𝜆I =
2𝜋
𝑘H

𝑀I = 𝑉'𝜌' =
4
3
𝜋

𝜆H
2

4

𝜌'
Jeans Mass

𝑀I

𝑀⨀
= 1.0×

𝑇
10𝐾

4/"

×
𝑛K

2×10.'𝑚04

0./"The Jeans Mass is the Mass above which gravity dominates => collapse !
Look at the strong dependence in temperature, and hence the crucial role 
of cooling (previous chapter) in the formation of structure !



Question : spectra if we have as 
many emissions as absorptions


