.




Equations of hydrodynamics
and hydrostatic equilibrium

TOOLBOX FOR THIS CHAPTER

Euler’s equation governs adiabatic and inviscid flow :

-

dv —
p E-I_ p(v-V)U = —VP — pVd,

PO

Density of Flow Pressure Gravitational
the fluid velocity Potential

In equilibrium v = 0, then :
—VP — pVd, =0

Poisson’s equation gives the gravitational potential :

V2D, = 4nGp

The equation of state for an ideal gas gives the
pressure :

_ pkpT
U

P

The equation of continuity

P v (o) =0
TR

We also need an equation describing the energy flux
but if we use the general form, we will not be able

to solve the equations analytically. Approximations
are needed !



The isothermal sphere

The simplest model in which pressure and gravity

allow stable configuration is the isothermal sphere.

In this model, we assume :

- a spherical symmetry
- a gas at a uniform temperature T

- the equation of state given by : P = p RZ—T

where a2 is the isothermal sound speed.

In spherical coordinates (r, 8, @), the gradient is

given by :

Vf =

of |
drr+rd9

19f ., 1

of

rsint9d(p(p

_ 42
= arp

In spherical coordinates (r, 0, @), the LapIace operator is given by :

Af = sz—

r2or

(v

af
or

i

1
r2sinf 00

(sm 7]

of
do

) *

1 9%f
r2sin? 6 d¢?

Hydrostatic
equilibrium
(v=0)

0 0
d — .
p 0L +p(w/ V)v = -VP — pVd,

The gravitational potential and the pressure are only
function of the radius 7, then the Euler’s equation can
be written as :

1d dCD




The isothermal sphere

SINGULAR ISOTHERMAL SPHERE

In the following we assume an isolated single isothermal
sphere, and we will try to get the solution (pressure,
mass, radius)

The gravitational force is given by :

Mp
—pVey = — 2
1dP do,
Then, from the Euler’s equation we get : p dr dr
ar _ GMp
dr 12

where the mass M, is the mass within a radius r :

M=M= forp(r’)4m"2dr’

The equation of state (P = p — BT = a%p) can be
written as :
dp GM p
az r?

Then :

Taking the radius derivative gives :
d ( ,dIn p) G dM

@ )T T EZa

., d
with 22 = 4772, then
ar

d ( 2dlnp) G 4
dr r dr ] aT Eh p
The exact solution of this equation is :
2
ar

plr) = 2Gr?




The isothermal sphere

SINGULAR ISOTHERMAL SPHERE

From the previous equation, we can determine :

* The total mass of the cloud

To g2 2a%,
M - 4 Zd =
(ro) _L amGrz T TG

* In equilibrium, there must be an external pressure
equaling the pressure at the surface of the cloud :
ar

2nGTy

* The cloud radius and isothermal sound speed can be
estimated from the Mass and external pressure

Py = a%P(ro) =

* Although the density and pressure diverge atr — 0,
the total mass, internal energy, etc.. are bounded

af
2Gr?

p(r) =

r

M(r) =j p(ranr'?dr’
0

Singular sphere because the density
and pressure diverge at r=0



The isothermal sphere
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The equation of state (P = p — BT = a%p) can be
written as :
dp GM p
az r?

Then :
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The isothermal sphere

SINGULAR ISOTHERMAL SPHERE

From the previous equation, we can determine :
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af
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M(r) =j p(ranr'?dr’
0

Singular sphere because the density
and pressure diverge at r=0



Summary of the isothermal
sphere

-

dv  — .
pa+ p(v-V)v =—-VP —pVd,

Singular Isothermal sphere
T=cst V2D, = 4nGp

. o Hydrostatic equilibrium
SH );’drqst(;t/c eZL{/IIt;r/um Spherical coordinates
pherical coordinates
1dP  dd, 14 2%% g
- < > = p
pdr dr r=dr dr

= a P, = a?p(r,) = i
p(r) = G2 0 TP\ 20GT?

These solutions (p(r) and P(r)) diverge atr — 0
Good description of the problem whenr > 0



The isothermal sphere

GENERAL SOLUTION

The Euler’s equation gives :

1dP do,;
pdr dr
with P = aZp, then :
ardp d®,
p dr dr
Integrating gives :
by
—Inp = —-+ cste
Dy

Or:

()
p(r) = p exp <— gﬁ”)
/ ar

pc=pr=0)+0

To simplify the analysis, we need to introduce
dimensionless variables :

1/2

() 4G

1,[)=—2g and E=< Z'DC> r
ar ar

The the Poisson’s eguation becomes :
1 5 dy -

VZCDg = 47TGp ?E df

The solution of previous equation is :

2
it



The isothermal sphere

GENERAL SOLUTION

The boundary solutions we can assume are :

- No gravitational force at the center of the cloud :

d
@), ="
dé £=0
- The density at the center of the cloud must be

P, thenp(§ =0) =0

No analytical solution, equation must be
integrated numerically.

However, we can estimate the total mass of the

cloud :
To

M(ry) =J pAnr?dr
0

Introducing the dimensionless variables gives :

M(ry) = 47Tpc< - ) f e V§2d¢g
0

4G p,
Then.: .
2 2
ar dy
o = () (09

There is one more parameter compared to the
singular solution : p. , and we need to also specify

2
ar,7o



The isothermal sphere

4
T
o

GENERAL SOLUTION

- 3
oGzM/a

p

We can also study the mass of the cloud as a
function of the density contrast defined as

pc/Po » where py = p(rp)

—
o

ﬁeim

There is a maximum cloud mass (m,) for
which equilibrium can be reached.

o
o

dimensionless clou

| 1 | | |

Density

2.0 3.0 4.0

Contrast log (p./po)



The polytropic sphere

The equation state of the pf)lytropic sphere is :
P=Kp'tn =Kp"
where n is the polytropic index :

- n=0 for rocky planets
- n=1.5 for star cores

For the general polytropic case, we will
demonstrate in problem sheet that the
temperature always follows the gravitational

potential :
1-T
kgT = T,ucbg



Virial equilibrium for the self-

gravitating sphere

In the following, we will test if the solutions we find for the isothermal
sphere are stable.

The equations of hydrostatic equilibrium are :

dP _ GMp

dr 12
and

dm 5

E= 4trep

To simplify, we will consider the mass as an independent variable, such
as:dr = then:

anr2p’

GM
Antr3dP = —4nr GMpdr = — r_dM

V=V0,p=Po Mo oM
) f 3VdP = — f —dM

V=0,p=p, 0

External medium




Virial equilibrium for the self-

gravitating sphere

V=Vo,p=Do Mo oM
] 3V dP = —f —dM
V=0,p=p, o T

To solve the previous equation, we need to integrate by part :
b

j S ek = [ = j S

a a

Therefore, we obtain :
v Vo,Do Mo oM
3[PV]0?1;’Z° -3 f PdV = — f —dM
0 0

/ lpC r\
3POV0 = 47T7‘(;;P0

Gravitational
—> Mo p
d
0

potential (Q)
;dM + Q = 4nrg Py

Equation of virial equilibrium

External medium




Stability of an isothermal cloud

MoP
3[ —dM + Q = 4nrd P,
o P

For an isothermal sphere, we know that: P = a%p, hence :

o g2 , kpT
3[ _dM = 3aTMO = 3_M0
o P K

We also know that :
3GM?
5 1n

Then the virial equilibrium equation for an isothermal cloud becomes :

kgT 3GM?

STMO—E o —47'[7"03P0=0

/ [ Associated with

Associated with Associated with o tarnal pressure
thermal pressure gravity

Stability conditions

If =0 =» equilibrium

If <O =» external pressure and gravity are
“stronger” than thermal pressure : the cloud is
collapsing

If >0 =» the thermal pressure is larger than
external pressure and gravity : the cloud is
expanding.



Stability of an isothermal cloud

The external pressure P, is given by :
3kgTM, 3 GM?

P, — —
() 4nr3y 20w rt
The maximum of this function is given by :
dPy(r) 4 GMZpu

dr  mex T Q5 T

with a maximum pressure of :

kpT\* 1
Pmaxzcg( u ) G3M§

Stability of the cloud of mass My and withr > 7;,,4, :

Py

- If the external pressure is increased by a small amount, the system will lie above the equilibrium line, then the virial

equation shows that the cloud must shrink.

- If the external pressure Py > P,,,, the cloud is not stable and can’t find any radius at which it will be in equilibrium : the

cloud is collapsing.



Stability of an isothermal cloud

kpT\* 1
Pmax_cg(T) G3ME ¢\§1-5 ‘ 1 ' T ‘ I ' l
For a given external pressure, a cloud will become IE
unstable to collapse when its mass exceeds : S
“la o
1/2 (kgT\? 1 1/2 a3 S
M = Cg U G3/2pt/? = Cg 1/2 372 I
0 Po £10 -
Bonnor-Ebert mass "
©
c |
Consider a cloud with a given p./p,, if we increase the o
external pressure then : %
L o 0.5 -
- The dimensionless mass will increase (m = p(Z)Cr'z_M/a;‘w ) 2
o
- For stability the internal pressure of the cloud must ‘@ Pc 1
increase o o ~14.1
£ Po’ max
- But at constant T, this requires p in the cloud to T 0 : ' ' L : '
0 1.0 2.0 3.0 4.0

increase and hence p,
Density Contrast log (p./po)



Jeans instability

PERTURBATION ANALYSIS OF
FLUID EQUATIONS

Initial conditions of the system (the fluid is stationary) :

* Vo= 0
* po = cste
* Py =cste

Introducing perturbed quantities :
* p=potp1
* v=vy+1;
® (Dg - q)o + (Dl
« P=Py+P

As previously, the unperturbed potential is assumed to
satisfy :
VZCDO == 47TGp0

-

dv

—+p(v-V)B = —VP — pVd
partrP-V) pV P,
Vi, = 4nGp
There is no solution when p, = cste
The equation of continuitydgiven by :
p
—+ V. =0
7 (pv)
becomes (to first order):
., _ Op
po(V.v7) = — —

Similarly, the other hydrostatic equations (Euler’s & Poisson’s)
become :

And

We also assume isothermal behaviour such as :
)
P, =arp;



Jeans instability

PERTURBATION ANALYSIS OF

FLUID EQUATIONS

Differentiating the continuity equation with respect to

time, we obtain :
10°p,

d
%(V. Ul) = _,0_0 9t2

Taking the divergence of the Euler equation :

2

d ar
a(v- V) = —V2¢1 - _V2P1
0

Combining the two previous equation gives :
, 1 0% 4nGp,
V = = + 2 pl = 0

2 A2
az 0t ar

‘ similar to the wave equation !

V.o ) =——
po(V.v1) 9t
M _ g VP
ot - ¢1 0 1

Therefore, we should look for wa\ie—like solutions of the form :
Py X ei(k.F—wt)

which gives a dispersion relation :
azk? — w? = 4nGp,

The system is unstable when the modes grow (i.e. w? < 0).

Hence we can define a critical wave number (when w? = 0) :
,  A4mGp, 4rmGu

7T ak _kBT'DO

And a characteristic wavelength :




Jeans instability

PERTURBATION ANALYSIS OF
FLUID EQUATIONS

The total mass within a sphere of diameter equal to For A > A; or M > M, the modes grow exponentially : the cloud
the Jeans wavelength 4; is : is collapsing
3
M, = én <’1_1> The Jeans Mass is the mass above which gravity dominates.
] T3 > Po
Moreover : . .
2 The Jeans mass is usually defined as :
5 2T wkgT 3/2 -1/2
/1]=k— :G ﬂ—lOX(— X( n )
j KPo Mg  \10 2x1010m -3
Then:
A _ 3 &M
2 m? kgT Importance of cooling which

Strong dependance
on temperature

could reduce the temperature
and therefore allow the
collapse of less massive clouds



Jeans instability

PERTURBATION ANALYSIS OF
FLUID EQUATIONS

In the early Universe, the absence of metals and dust (not
enough time to form ) and the much reduced molecular gas
content implies very poor cooling

|

Formation of massive stars in the early Universe




Magnetic fields

Magnetic fields are important components of the ISM : these can
provide additional forces which can act to stabilise clouds against
gravitational collapse.

The derivation of the Euler equation in the case of magnetic
fields is complex. We will just give the solution of the Euler

equation :
_ 3kgTM, 1 (cb,%, 3 2)

drdu 4wy

IR,

Thermal Magnetic Gravity
Pressure pressure

The pressure will be a monotonically decreasing

function of rif :
2

3
ﬁ >5c;M0

The clouds will always be stable if ®,, is a
constant.



Application to molecular clouds

Giant Molecular Clouds can be seen as swarms of more
coherent clumps.

The Jeans mass for gas with ny~2000 and T~10K is
M;~3Mg. This is well below the observed masses of the
individual clouds and of order the mass of typical dense
cores.

=>» There must be an additional form of support : the
magnetic pressure.

Zeeman splitting provides a method for measuring the
magnetic fields in clouds, although this has only be
successful in a handful of dark clouds.

From the magnetic virial equation we can find the
maximum cloud mass which could be supported against
its own self-gravity by magnetic pressure alone :
2 5 Bn2r4BZ
367 2w,




Application to molecular clouds

Then:
- () »
“\nr pc =

Inserting typical values for several cloud types, we can show that most dark clouds can
be stabilised by magnetic effects :

* For dense cores M~M]

* The density ratio is measured to p./py~10

Neot
e i m-

Giant Molecular Cloud 50-500
Dark Cloud Complex 500 10 10 104 17
Individual Dark Cloud 103 2 10 30 2-10

Dense Core 104 0.1 10 10 2-10



Summary of yesterday'’'s lecture

Singular Isothermal sphere
T=cst V2D, = 4nGp

-

dv  — .
pa+ p(v-V)v =—-VP —pVd,

. o Hydrostatic equilibrium
SH );’drqst(;t/c eZL{/IIt;r/um Spherical coordinates
pherical coordinates
1dP  dd, 14 2%% g
- < > = p
pdr dr r=dr dr

— aF P, = a?p(r,) = i
p(r) = TG 0 TP 210G

These solutions (p(r) and P(r)) diverge atr — 0
Good description of the problem whenr > 0



Summary of yesterday'’'s lecture

p.=p(r=0)+0 Isothermal sphere 3
’ General Solution ar \? , Ay
Dy (1) ¢ £=%o
p(r) = pcexp| ——
ar

Comparing with the mass expression
— obtained from the singular isothermal

G sphere analysis, we see that one more
parameter is needed p,

Introducing dimensionless variables

1/2
® 4mG e S
Y=— and f=(—2pc> T ¥
ey ar S

3
2

L
2
OG

=p

Euler’s equation

1d 4,

§2d§° d§

No analytical solutions ; : .
numerical integration needed Density Contrast log (p./po)

dimensionless cloud mass m




Summary of yesterday'’'s lecture

Virial equation for a spherical gas cloud

kT 3 GM2

37 0_§ 7o —47TT03P0=0

/D

Associated with
external pressure

Associated with Associated
thermal pressure with gravity

- If =0 =» equilibrium
- If <0 =» the cloud is collapsing
- If >0 = the cloud is expanding.

Stability of a gas cloud

Evolution of the pressure

3ksTM, 3 GM?

Py(r) =

Amr3y 20w r*




Summary of yesterday'’'s lecture

Jeans Instability

Introducing perturbed quantities

p = po+p1 Only keeping first order terms
V=109 + v
cDg - CI)O + q)l
P - PO + P1
2 —
—+V(pv)—0 VCD 47TGp

dt

dv — .
pE+ p(v-V)v =—-VP —pVd,




Summary of yesterday'’'s lecture

M, T /2 ny
— = 1.0x (—) X
Mg 10K (2><1010m—3)

Wave equation .
Form of the solution

(T2 1 92 A1G py Jeans Mass 4 A ;
py x eilkf-wt)  ——— (vz “Zwt e >p1 =0 —— > M;=Vopo=37(>] Po

-1/2

e 9
0° . b CANG
0¥ g5 NS
azk? — w? = 4nGp, % S|g N\
NS
'NA ¥ 21
b=
12— dnGpy 4nGu J
j

a:  kgT M



Question : spectra if we have as

many emissions as absorptions

Intensity

L (R YR e o s R R I e e e D [
— Emission from edges

of shell perpendicular
to line of sight (C)

Emission from —_____
approaching front
portion of shell (B)

Continuum

___ Emission from receding |
rear portion of shell (D) —

L

Absorption due to
approaching near
side of shell (A)

| IR U IR S GRNN NUN RSN R S S |
Blueshift A Redshift
0
A—>

Expanding
shell




