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1. Introduction

Earlier theories . . . were based on
the hypothesis that all the matter
in the universe was created in one
big bang at a particular time in the
remote past.

— Sir Fred Hoyle

This course aims to address the formation of structure in the universe, one of
the most active topics in modern astrophysics. Over the past two decades, huge
advances have been done in understanding how structures develop on both large
and small scales with the arrival of large ground-based and space telescopes (e.g.
Hubble Space Telescope, Spitzer Space Telescope, the Very Large Telescope, Keck
Observatory, the Gran Telescopio Canarias, etc.). The arrival within the next 10
years of even larger facilities, such as the Extremely Large Telescope or SKA, will
have strong impact on our understanding of these processes.
The current model on structure formation describes how initial density pertur-
bations develop into proto-galaxies, and how these small galaxies merge to form
larger galaxies over cosmic time. At a smaller scale, we know how star formation
takes place in a group of stars and how the gaseous medium in galaxies (hereafter
the Inter-Stellar Medium - ISM) is structured and evolved. However the link be-
tween the large and small scales is not well understood yet.

This course will build on the knowledge obtained from two previous courses :

• The Astrophysics and Cosmology major option from last term

• The Part II Astrophysical fluid dynamics

Several concepts of dynamics, electrodynamics, Special Relativity, and thermo-
dynamics will be used throughout this course, and we will assume that you are
familiar with the material from last term. We will also make use of some areas of
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physics we do not have time to cover in detail, but we will need to use results from
them nevertheless. Key references will be given, but we do not expect you to look
these up.

1.1 The first 3 minutes of the Universe
According to the current standard paradigm, the Big-Bang is the starting point
of the history of the Universe (Figure 1.1). Shortly after the Universe undergoes
a period of exponential inflation (from 10≠36 s and 10≠32 s after the Big-Bang)
which predicts :

• a near spatially flat universe as a result of the rapid inflation with a total
density close to the critical density (defined as the watershed point between
an expanding and a contracting Universe).

• the exponential growth of the scale factor during inflation caused quantum
fluctuations of the inflation field to be stretched to macroscopic scales and
these fluctuation had the same amplitude on all physical scales.

After the inflation phase, the Universe’s volume has increased by a factor of at
least 1078, it is mainly composed of quarks. The Universe continued to decrease
in density and fall in temperature, hence the typical energy of each particle was
decreasing. At about 1µs, quarks and gluons combined to form baryons such as
protons and neutrons. At that time, protons and electrons are not bounded to-
gether, while nuclei of deuterium, helium and lithium are formed. Essentially all
of the elements that are heavier than lithium form much later, by stellar nucle-
osynthesis in evolving and exploding stars.

Few minutes after the Big-Bang, the Universe is composed of :

• radiation (photons and neutrinos)

• baryonic matter (protons, neutrons, electrons, etc.)

• dark matter: non baryonic matter which interacts only weakly with ordinary
matter (typically a human body will interact with only 1 dark matter particle
over its lifetime), and is ‘cold’ (i.e. ‘non relativistic’).

• dark energy dominating the mass/energy budget
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1.2 The formation of the first stars and galaxies
The Universe cools down as it is expanding. Over-dense regions grow from the
initial perturbation and are dominated by dark matter. Eventually, when the uni-
verse is su�ciently cold (¥370 000 years after the Big-Bang according to the latest
Planck results), matter and radiation are decoupled (transparency increases), and
the electrons and protons start to be bound to form neutral hydrogen following :

e + p æ H + “ (1.1)

Once photons decoupled from matter (also known as the recombination phase),
they travelled freely through the universe without interacting with matter and
constitute what is observed today as Cosmic Microwave Background radiation
(hereafter CMB - Figure 1.2). The imprint of the initial structure of the Universe
is left on the CMB. After the recombination, the Universe continues to expand
and cool. The baryonic matter (mainly composed of hydrogen atoms) is neutral,
and there is no source of light (e.g, stars) in the Universe : this epoch is called
‘The Dark Ages’.
The over-dense regions continue to grow in the dark matter distribution, forming
well defined dark matter potential wells. Their density becomes su�ciently large
that their gravitational field is dominated by their own mass and they decouple
from the Hubble flow1. We say that they are self-gravitating objects. Gravi-
tational interactions lead to mergers of the dark-matter potential wells forming
larger structures. Some baryonic mass falls into the dark matter potential wells,
and at the centre of potential wells in high density region the gas cools leading to
the formation of the first luminous objects.
Focusing now on the self-gravitating systems : baryonic matter forms a complex
multi-phase system subject to thermal and gravitational instabilities. Within this
complex gaseous phase, star formation proceeds on small scales against the back
drop of cosmological evolution.
The heating and cooling of the gas in a gravitational field leads to a complex
multi-phase medium. Cool clouds exist in dynamical equilibrium with hotter, low-
density phases. The densest region can cool su�ciently fast that they are unstable
to gravitational collapse, and collapse of these unstable regions within baryonic
gas leads to fragmentation of the cold dense clouds. Then, proto-stars form as
the collapsing gas heats up. Since the parent cloud has angular momentum, disks
form in the protostellar regions. The final step of this evolution, is the formation
of planetary systems from the cooling discs around stellar systems.

This course start with the understanding of the processes responsible for star
1
The ‘Hubble flow’ describes the motion of galaxies due solely to the expansion of the Universe.
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formation, and in particular the formation of stars within molecular clouds, which
fragment and collapse as a consequence of gravitational instabilities and radiative
cooling.

Important equations we will use in this course

• Euler’s equation : in fluid mechanics, they are a set of quasilinear hyperbolic
equations governing adiabatic and inviscid flow (i.e. Òfl = 0), given by

fl
ˆv̨

ˆt
+ fl(v̨ · Ò)v̨ = ≠ÒP + Ò�g (1.2)

where v̨ is the flow velocity, P the pressure and �g the gravitational potential

• The Poisson’s equation is an elliptic partial di�erential equation of broad
utility in theoretical physics given by :

�„ = Ò2„ = f (1.3)

In three-dimensional Cartesian coordinates, it takes the form :
A

ˆ2

ˆx2 + ˆ2

ˆy2 + ˆ2

ˆz2

B

�(x, y, z) = f(x, y, z) (1.4)

In the case of a gravitational potential, we can write :

g̨ = ≠Ò�g (1.5)

and the Gauss law gives :
Ò · g̨ = ≠4fiGfl (1.6)

therefore :
Ò(≠Ò�g) = ≠4fiGfl (1.7)

which gives the Poisson’s equation for the gravitational potential :

Ò2�g(r̨) = 4fiGfl(r̨) (1.8)

• The equation of continuity is an equation that describes the transport of
some quantity. It is particularly simple and powerful when applied to a con-
served quantity, but it can be generalised to apply to any extensive quantity.
Since mass, energy, momentum, electric charge and other natural quanti-
ties are conserved under their respective appropriate conditions, a variety of
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physical phenomena may be described using continuity equations. It is given
by :

ˆfl

ˆt
+ Ò · j̨ = 0 (1.9)

where fl is the density in mass per unit volume and j̨ = flv̨ is the flux.

• the equation of state for an ideal gas given by :

P = flkBT

µ
(1.10)

where fl is the density, kB is the Boltzmann constant, T is the temperature,
and µ the mass of the particle.
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Figure 1.2 : The Cosmic Microwave Background observed by the Planck satellite. The
colours trace the temperature of the radiation. It demonstrates the non-uniformity of the
universe 370 000 years after the Big-Bang. Source : Planck collaboration
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The Epoch of Reionisation

When the first stars formed in the Universe (the so-called ‘Cosmic Dawn’
epoch), their photons started to ionise the neutral hydrogen formed at the
recombination phase. The neutral hydrogen atoms absorb CMB photons:
observing the CMB at di�erent epochs gives the evolution of the amount of
neutral hydrogen as a function of time. According to Planck observations
of the CMB, the ionisation of the neutral hydrogen is completed 1 billion
years after the Big-Bang (Figure 1.4).

Figure 1.3 : Evolution of the neutral fraction of hydrogen (1-QHII) as a function
of redshift. The data points show the constrain from galaxies/quasars observa-
tions. The coloured regions are from CMB observations with di�erent assump-
tions (blue and red used Planck data and the yellow curve is based on WMAP
data. Source : Robertson et al. 2015, ApJL, 802, 19

Studying the process of reionisation of the neutral hydrogen during the
first billion years of the Universe is crucial to shape future evolution of
structure. Three conclusions arise from these studies :

• first structure grows hierarchically by merger of small dark-matter
halos with further infall of baryonic matter into the potential wells
formed by the dark matter.

• These early galaxies evolve very quickly as large amount of dense gas
(the fuel for star formation) is made available by this hierarchical
build-up of self-gravitating objects

• an evolving distribution of galaxies of di�erent masses is formed.
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The Search for the Most distant galaxies

One of the most active topics of modern extragalactic astronomy is the
search for the most distant galaxies, formed few million years after the Big-
Bang. This quest for the first object illuminating the Universe for the first
time started in the 1950s with the opening of 2m-class telescopes. At this
time, the most distant galaxies was at a redshift of z =0.20 (11.7 billion
years after the Big-Bang - Humason et al., 1956, AJ, 61, 97). In January
2023, the confirmed most distant galaxy (confirmed by spectrosocpy) is
at z =13.27 (323 million years after the Big-Bang - Harikane et al. 2022,
ApJ, 929, 1).

Figure 1.4 : Evolution of the redshift of the most distant galaxy known as
a function of time. The name and picture of each telescope involved in the
discovery is indicated. This evolution is exponential and follows the opening of
new observatory.

In December 2021, from French Guyana, an Ariane V rocket launched in
Space the James Webb Space Telescope (JWST), a space telescope with a
6.5m diameter mirror. After one month of travel to reach L2, the commis-
sioning of the 4 instruments started. On July 13th 2022 the first images
obtained with this telescope have been released (including one by the US
president). In less than a week after this release, a dozen of galaxy candi-
dates at z Ø13 has been announced, confirming the very high activity of
this field of research. Spectroscopic follow-up of these candidates are now
on the way, and new redshift record could happen shortly, even during
this term. Stay tuned !
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2.1. RADIATION PROCESSES IN ASTROPHYSICS 122. Physical processes in
baryonic gas

An experiment is a question which
science poses to Nature and a
measurement is the recording of
Nature’s answer.

— Max Planck

The main goal of the following chapter is to discuss the physical mechanisms
by which the baryonic gas is heated and cooled in the interstellar medium. We
will therefore start by discussing the radiation processes in astrophysics before
exploring in details the heating and cooling mechanisms of astrophysical gas and
thermal stability.

2.1 Radiation processes in Astrophysics

When the scale of a system greatly exceeds the wavelength of radiation (e.g., light
shining through a keyhole), we can consider radiation to travel in straight lines.
One of the most primitive concepts is that of energy flux : consider an element of
area A exposed to radiation for a time dt. The amount of energy passing through
the element should be proportional to dA ◊ dt, and we write it as :

dE = dF ◊ dA ◊ dt. (2.1)

The energy flux F is usually measured in erg s≠1 cm≠2.
A source of radiation is called isotropic if it emits energy equally in all directions.
An example would be a spherically symmetric, isolated star. If we put imaginary
spherical surfaces S1 and S at radii r1 and r, respectively, we know by conservation
of energy that the total energy passing through S1 must be the same as that passing
through S. Thus :

F (r1)4fir2
1 = F (r)4fir2 (2.2)
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Figure 2.1 : Geometry for obliquely incident rays

or
F (r) = F (r1)r2

1
r2 (2.3)

and then, if we regard the sphere S1 as fixed, then :

F (r) = constant
r2 (2.4)

2.1.1 Description of a radiation field
The flux is a measure of the energy carried by all rays passing through a given
area. If we consider an area dA normal to the direction of a given ray, and if we
consider also all rays passing through dA whose direction is within a solid angle
d� of the given ray, then the energy crossing dA in a time dt and in a frequency
range d‹ is then defined by the relation :

dE = I‹dA dt d�d‹ (2.5)

where I‹ is the specific intensity or brightness. It has a dimension of :

I‹(‹, �) = energy(time)≠1(area)≠1(solid angle)≠1(frequency)≠1 (2.6)
= erg s≠1 cm≠2 sr≠1 Hz≠1 (2.7)

Suppose now that we have a radiation field (rays in all direction) and construct a
small element of area dA at some arbitrary orientation n̨ (Figure 2.1). Then the
di�erential amount of flux from the solid angle d� is :

dF‹ = I‹ cos ◊ d� (2.8)
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The net energy flux is obtained by integrating dF over all solid angles :

F‹ =
⁄

I‹ cos ◊ d� (2.9)

Note that if I‹ is an isotropic radiation field (not a function of angle), then the
net energy flux is 0 since

s
cos ◊ d�=0

The specific energy density u‹ is defined as the energy per unit volume per unit
frequency range. To determine this it is convenient to consider first the energy
density per unit of solid angle u‹(�) by :

dE = u‹(�) dV d� d‹ (2.10)

where dV is a volume element.
Consider a cylinder about a ray of length (i.e. ct), since the volume of the cylinder
is dA ◊ c ◊ dt,

dE = u‹(�) dA cdt d� d‹ (2.11)

but since radiation travels at velocity c, within dt all the radiation in the cylinder
will pass out of it :

dE = I‹ dA d� dt d‹ (2.12)

similar to eq. 2.5.
Equating eq. 2.5 and eq. 2.11 yields :

u‹(�) = I‹

c
(2.13)

Integrating over solid angles gives :

u‹ =
⁄

u‹(�) d� = 1
c

⁄
I‹ d� (2.14)

We also need to define the mean density as :

J‹ = 1
4fi

⁄
I‹ d� (2.15)

Therefore, the energy density can be simplified as :

u‹ = 4fi

c
J‹ (2.16)

Finally the total radiation density (in erg cm≠3) is simply obtained by integrating
u‹ over all frequencies :

u =
⁄

u‹ d‹ = 4fi

c

⁄
J‹ d‹ (2.17)
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2.1.2 Radiative Transfer
If a ray passes through a matter, energy may be added or subtracted from it
by emission or absorption, and the specific intensity will not in general remain
constant.

Emission

The spontaneous emission coe�cient j is defined as the energy emitted per unit
time per unit solid angle and per unit volume :

dE = j dV d� dt (2.18)

A monochromatic emission coe�cient can be similarly defined so that :

dE = j‹ dV d� dt d‹ (2.19)

where j‹ has units of erg cm≠3 s≠1 sr≠1 Hz≠1.
In general, the emission coe�cient depends on the direction into which emission
takes place. For an isotropic emitter, or for a distribution of randomly oriented
emitters, we can write :

j‹ = 1
4fi

P‹ (2.20)

where P‹ is the radiated power per unit volume per unit frequency.
Sometimes the spontaneous emission is defined by the emissivity ‘‹ , defined as
the energy emitted spontaneously per unit frequency per unit time per unit mass,
with units of erg g≠1 s≠1 Hz≠1, if the emission is isotropic then :

dE = ‘‹fl dV dt d‹
d�
4fi

(2.21)

where fl is the mass density of the emitting medium.
Comparing eq.2.19 and eq.2.21, we have the relation between ‘‹ and j‹ :

j‹ = ‘‹fl

4fi
(2.22)

holding for isotropic emission.
In going a distance ds, a beam of cross section dA travels through a volume
dV = dA ◊ ds. Thus the intensity added to the beam by spontaneous emission is
:

dI‹ = j‹ds (2.23)
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Absorption

By definition, the absorption coe�cient, –‹(cm≠1), represents the loss of intensity
in a beam as it travels a distance ds1 :

dI‹ = ≠–‹I‹ ds (2.24)

This phenomenological law can be understood in terms of microscopic model in
which particles with density n (number per unit volume) each present an e�ective
absorbing area, or cross section, of magnitude ‡‹ (cm2). These absorbers are
assumed to be distributed at random. Let us consider the e�ect of these absorbers
on radiation through dA within solid angle d�. The number of absorbers in the
element equals n ◊ dA ◊ ds. The total absorbing area presented by absorbers
equals n ◊ ‡‹ ◊ dA ◊ ds. The energy absorbed out of the beam is :

≠ dI‹ dA d� dt d‹ = I‹(n‡‹ dA ds) d� dt d‹ (2.25)

thus
dI‹ = ≠n‡‹I‹ ds (2.26)

which is precisely the above phenomenological law where :

–‹ = n‡‹ (2.27)

Often –‹ is written as :
–‹ = flŸ‹ (2.28)

where fl is the mass density and Ÿ‹(cm2 g≠1) is called the mass absorption coe�-

cient, Ÿ‹ is also sometimes called the opacity coe�cient.

The radiative transfer equation

We can now incorporate the e�ects of emission and absorption into a single equa-
tion giving the variation of specific intensity along a ray. From the above expres-
sions for emission and absorption, we have the combined expression :

dI‹

ds
= ≠–‹I‹ + j‹ (2.29)

The transfer equation provides a useful formalism within which to solve for the
intensity in an emitting and absorbing medium. Once –‹ and j‹ are known it
is relatively easy to solve the transfer equation for the specific intensity. When
scattering is present, solution of the radiative transfer equation is more di�cult,
because emission into d� depends on I‹ in solid angles d�Õ integrated over the
latter (scattering from d� into d�’).
Here we can give solutions to two simple limiting cases :

1–‹ is positive for energy taken out of a beam
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1. Emission Only : –‹=0. In this case we have :

dI‹

ds
= j‹ , (2.30)

which has the solution :

I‹(s) = I‹(s0) +
⁄ s

s0
j‹(sÕ) dsÕ (2.31)

The increase brightness is equal to the emission coe�cient integrated along
the line of sight

2. Absorption Only : j‹=0. In this case we have :

dI‹

ds
= ≠–‹I‹ , (2.32)

which has the solution :

I‹(s) = I‹(s0) exp
5
≠

⁄ s

s0
–‹(sÕ) dsÕ

6
(2.33)

The brightness decreases along the ray by the exponential of the absorption
coe�cient integrated along the line of sight.

Optical depth and Source Function

Here it is useful to define the optical depth ·‹ which is a measure of the transparency
of a medium. It is defined as :

d·‹ = –‹ ds (2.34)

or :
·‹(s) =

⁄ s

s0
–‹(sÕ) dsÕ (2.35)

A medium is said to be optically thick or opaque when ·‹ , integrated along a typical
path through the medium, satisfies ·‹ Ø1. When ·‹ Æ1, the medium is said to be
optically thin or transparent. In other words, an optically thin medium is one in
which the typical photons of frequency ‹ can traverse the medium without being
absorbed, whereas an optically thick medium is one in which the average photon
of frequency ‹ cannot traverse the entire medium without being absorbed.
The transfer equation can now be rewritten as :

dI‹

d·‹
= ≠I‹ + S‹ (2.36)
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where S‹ is the source function, defined as the ratio of the emission coe�cient to
the absorption coe�cient :

S‹ = j‹

–‹
(2.37)

We can now solve the equation of radiative transfer by regarding all quantities
as functions of the optical depth ·‹ instead of s, multiplying the equation by the
integrating factor e·‹ :

d
d·‹

(I‹e·‹ ) = S‹e·‹ (2.38)

then the formal solution of the previous equation is :

I‹(·‹) = I‹(0)e≠·‹ +
⁄ ·‹

0
e≠(·‹≠· Õ

‹)S‹(· Õ
‹) d· Õ

‹ (2.39)

Since ·‹ is just the dimensionless e≠folding factor for absorption, the above equa-
tion is easily interpreted as the sum of two terms : the initial intensity diminished
by absorption plus the integrated source diminished by absorption.
As an example consider a constant source function S‹ , then eq.2.39 gives the
solution :

I‹(·‹) = I‹(0)e≠·‹ + S‹(1 ≠ e≠·‹ ) (2.40)
= S‹ + e≠·‹ (I‹(0) ≠ S‹) (2.41)

Mean Free Path

A useful concept, which describes absorption in an equivalent way, is that of the
mean free path of radiation (or photons). This is defined as the average distance
a photon can travel through an absorbing material without being absorbed. It
may be easily related to the absorption coe�cient of a homogeneous material.
Consider the photon mean free path as it tries to escape from an emitting region,
when ·‹ = 1 then s–‹ = 1, or :

s = 1
–‹

(2.42)

= 1
n‡‹

(2.43)

This distance is the definition of the mean free path l‹ .
A photon escaping from a region with an optical depth ·‹ will undergo a random
walk with N scatterings. For a region of size L :

L =


Nl‹ ∆ N ≥ L2

l2‹
≥ (–‹L)2 = ·2

‹ (2.44)
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2.1.3 Thermal Radiation
By definition, thermal radiation is radiation emitted by matter in thermal equilib-
rium. The best example of thermal radiation is the blackbody radiation. To obtain
such radiation we keep an enclosure at temperature T and do not let radiation in
or out until equilibrium has been achieved. Using some general thermodynamic
arguments plus the fact that photons are massless, we can derive several important
properties of blackbody radiation.
An important property of I‹ is that it is independent of the properties of the
enclosure and depends only on the temperature :

I‹ = B‹(T ) (2.45)

where B‹(T ) is the Planck function. Its form is discussed below.
Now consider an element of some thermally emitting material at temperature T ,
so that its emission depends solely on its temperature and internal properties. Put
this into the opening of a blackbody enclosure at the same temperature T . Let the
source function be S‹ . If S‹ > B‹ , then I‹ > B‹ , and if S‹ < B‹ , then I‹ < B‹

(see eq.2.43). But the presence of the material cannot alter the radiation, since
the new configuration is also a blackbody enclosure at temperature T . Thus we
have the two following relations :

S‹ = B‹(T ) (2.46)
j‹ = –‹B‹(T ) (2.47)

The transfer radiation for thermal radiation can be rewritten as :
dI‹

ds
= ≠–‹I‹ + –‹B‹(T ) (2.48)

or

dI‹

d·‹
= ≠I‹ + B‹(T ) (2.49)

The Planck function is usually defined as :

B‹(T ) = 2h‹3/c2

exp (h‹/kT ) ≠ 1 (2.50)

At this point, it is well to draw the distinction between blackbody radiation, where
I‹ = B‹ , and thermal radiation where S‹ = B‹ . Thermal radiation becomes a
blackbody radiation only for optically thick media.
Blackbody radiation, like any system in the thermodynamic equilibrium can be
treated by thermodynamic methods. Let us make a blackbody enclosure with a
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Figure 2.2 : Spectrum of blackbody radiation at various temperature (from Kraus J.D.
1966)

piston, so that work may be done on or extracted from the radiation. Now, by the
first law of thermodynamics, we have :

dU = dQ ≠ PdV (2.51)

where Q is the heat and U is the total energy.
By the second law of thermodynamics, we have :

dS = dQ

T
(2.52)

where S is the entropy.
But U = uV , and P = u

3 , and u depends only on the temperature T since u =
(4fi/c)

s
J‹d‹ and J‹ = B‹(T ), thus we have :

dS = V

T

3 du

dT

4
dT + u

T
dV + 1

3
u

T
dV (2.53)

= V

T

3 du

dT

4
dT + 4u

3T
dV (2.54)

Since dS is a perfect di�erential,
3

ˆS

ˆT

4

V
= V

T

du

dT

3
ˆS

ˆV

4

T
= 4u

3T
(2.55)
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Thus we obtain :
ˆ2S

ˆTˆV
= 1

T

du

dT
= ≠ 4u

3T 2 + 4
3T

du

dT
(2.56)

so that
du

dT
= 4u

T
,

du

u
= 4dT

T
(2.57)

log u = 4 log T + log a (2.58)

where log a is a constant of integration. Thus we obtain the Stefan-Boltzmann

law:
u(T ) = aT 4 (2.59)

This may be related to the Planck function, since I‹ = J‹ for isotropic radiation
(see eq.2.16) :

u = 4fi

c

⁄
B‹(T ) d‹ = 4fi

c
B(T ) (2.60)

where the integrated Planck function is defined by :

B(T ) =
⁄

B‹(T ) d‹ = ac

4fi
T 4 (2.61)

The emergent flux from an isotropically emitting surface (such as a blackbody) is
fi◊ brightness, so that :

F =
⁄

F‹d‹ = fi
⁄

B‹d‹ = fiB(T ) (2.62)

This leads to another form of the Stefan-Boltzmann law :

F = ‡T 4 (2.63)

where :

‡ = ac

4 = 5.67 ◊ 10≠5erg cm≠2deg≠4s≠1, (2.64)

– = 4‡

c
= 7.56 ◊ 10≠15erg cm≠3deg≠4 (2.65)

2.2 Line emission

2.2.1 The Einstein coe�cients
The Kircho�’s law, j‹ = –‹B‹ , relating emission to absorption for a thermal
emitter, clearly must imply some relationship between emission and absorption
at a microscopic level. This relationship was first discovered by Einstein in a
beautifully simple analysis of the interaction of radiation with an atomic system.
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He considered the simple case of two discrete energy levels : the first of energy E
with statistical weight g1, the second of energy E + h‹0 with statistical weight g2.
The system makes a transition from 1 to 2 by absorption of a photon of energy
h‹0. Similarly, a transition from 2 to 1 occurs when a photon is emitted. Einstein
identified three processes :

1. Spontaneous Emission: This occurs when the system is in level 2 and
drops to level 1 by emitting a photon, and it occurs even in the absence of a
radiation field. We define the Einstein A-coe�cient by :

A21 =transition probability per unit time
for spontaneous emission (s≠1)

2. Absorption : This occurs in the presence of photons of energy h‹0. This
system makes a transition from level 1 to level 2 by absorbing a photon.
Since there is no self-interaction of the radiation field, we expect that the
probability per unit time for this process will be proportional to the density
of photons (or to the mean intensity) at frequency ‹0. To be precise, we must
recognise that the energy di�erence between the two levels is not infinitely
sharp but is described by a line profile function „(‹), which is sharply peaked
at ‹ = ‹0 and which is conveniently taken to be normalized :

⁄ Œ

0
„(‹) d‹ = 1 (2.66)

This line profile function describes the relative e�ectiveness of frequencies in
the neighbourhood of ‹0 for causing transitions. These arguments leads us
to write :

B12J = transition probability per unit time for absorption, where

J =
⁄ Œ

0
J‹„(‹) d‹ (2.67)

The proportionality constant B12 is the Einstein B-coe�cient

3. Stimulated Emission : Einstein found that to derive Planck’s law another
process was required that was proportional to J and caused emission of
photon. As before we define :

B21J = transition probability per unit time for stimulated emission

B21 is another Einstein B-coe�cient
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In thermodynamics equilibrium, we have that the number of transitions per unit
time per unit volume out of state l equal the number of transitions per unit time
per unit volume into state l. If we let n1 and n2 be the number densities of atoms
of level 1 and 2 respectively, this reduces to :

n1B12J = n2A21 + n2B21J (2.68)

Now solving for J :
J = A21/B21

(n1/n2)(B12/B21) ≠ 1 (2.69)

In thermodynamics equilibrium, the ratio of n1 to n2 is :

n1
n2

= g1 exp(≠E/kT )
g2 exp[≠(E + h‹0)/kBT ] = g1

g2
exp(h‹0/kBT ) (2.70)

so that :
J = A21/B21

(g1B12/g2B21) exp(h‹0/kT ) ≠ 1 (2.71)

But in the thermodynamics equilibrium we also know J‹=B‹ and the fact that
B‹ varies slowly on the scale of �‹ implies that J = B‹ . For the expression
in eq.2.71 to equal the Planck function for all temperatures, we must have the
following Einstein relation :

g1B12 = g2B21 (2.72)

A21 = 2h‹3

c2 B21 (2.73)

2.2.2 Absorption and Emission coe�cients in terms of Einstein
coe�cients

To obtain the emission coe�cient j‹ we must make some assumption about the
frequency distribution of the emitted radiation during a spontaneous transition
from level 2 to 1. The simplest assumption is that this emission is distributed in
accordance with the same line profile function „(‹) that describes absorption. The
amount of energy emitted in volume dV , solid angle d�, frequency range d‹, and
time dt is, by definition, j‹ dV d� d‹ dt. Since each atom contributes an energy
h‹0 distributed over a 4fi solid angle for each transition, this may also be expressed
as (h‹0/4fi)„(‹)n2A21 dV d� d‹ dt, so that the emission coe�cient is :

j‹ = h‹0
4fi

n2A21„(‹) (2.74)
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To obtain the absorption coe�cient, we first note that the total energy absorbed
in time dt and volume dV is :

dV dt
h‹0
4fi

n1B12

⁄
d�

⁄
d‹„(‹)I‹ (2.75)

Therefore the energy absorbed out of a beam in frequency range d‹ solid angle d�
time dt and volume dV is :

dV dt d� d‹
h‹0
4fi

n1B12„(‹)I‹ (2.76)

Assuming the volume element is dV = dA ◊ ds, the absorption coe�cient is given
by :

–‹ = h‹

4fi
n1B12„(‹) (2.77)

What about the stimulated emission ? At first sight one might be tempted to add
this as a contribution to the emission coe�cient ; but notice that it is proportional
to the intensity and only a�ects the photons along the given beam, in close analogy
to the process of absorption. Thus it is much more convenient to treat stimulated
emission as negative absorption and include its e�ects through the absorption coef-
ficient. In operational terms these two processes always occur together and cannot
be disentangled by experiments. By reasoning entirely analogous to that leading
to the previous equation, we can find the contribution of stimulated emission to
the absorption coe�cient. The result for the absorption coe�cient, corrected for
stimulated emission is :

–‹ = h‹0
4fi

„(‹)(n1B12 ≠ n2B21) (2.78)

As atoms collide, their electrons can be knocked up to the next higher energy level
if the colliding atoms have enough energy (collisional excitation). The electron
can even be knocked entirely away from the atom (ionization). Looking at the
problem from a statistical standpoint, the probability of the atom’s being in one
energy state, sa, is

P (sa) ≥ exp(≠Ea/kT ) (2.79)

and the probability for state sb is :

P (sb) ≥ exp(≠Eb/kT ) (2.80)

where Ea and Eb are the energies of the two states. The ratio of these probabilities
is then :

P (sb)
P (sa) = exp(≠Eb/kT )

exp(≠Ea/kT ) (2.81)
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However, more than one state in an atom can have the same energy (i.e. they can
be degenerate), e.g. in He I (neutral helium) two electrons in the ground state have
n = 1, but the two electrons spin in opposite directions (ms = +1/2, -1/2). We
define the degeneracy (the number of states with the same energy Ea) as ga, which
is called the statistical weight of state a. The above expression then becomes :

P (sb)
P (sa) = gb exp(≠Eb/kBT )

ga exp(≠Ea/kBT ) (2.82)

For a large number of atoms, the ratio of probabilities must be the same as the
ratio of numbers of atoms in the two energy levels, e.g. :

Nb

Na
= gb

ga
exp[≠(Eb ≠ Ea)/kBT ] (2.83)

This is the Boltzmann Equation.
Therefore another important transition rates to take into account is the collisional
processes leading excitation or de-excitation n0C21 and n0C12 respectively, where
n0 is the density of colliding particles. When the gas is ionised, it is often the case
that the collisions are dominated by electron-ion collisions in which case n0 ¥ ne

If the gas is in thermodynamic equilibrium at a temperature T then detailed
balance requires :

C12 = g2
g1

C21 exp(≠[E1 ≠ E2]/kT ) (2.84)

2.2.3 Excitation of lines by collisions
This is a crucial cooling processes in astrophysical gas whereby thermal energy
can be dissipated via radiation. Assuming the previous two-level system : the
number of transitions from 1 æ 2 must equal the number of transition from 2 æ
1, including the collisional e�ects, we can now rewrite eq.2.68 :

n1(n0C12 + B12J) = n2(A21 + B21J + n0C21) (2.85)

N.B.: the n1n0 terms before the collisional coe�cient takes into account the number
of electron n0 and the number density of atoms in state 1 and 2, n1 and n2
respectively.
We can easily make the assumption that induced processes are much less important
than spontaneous transitions and collisions, therefore :

n1n0C12 = n2(A21 + n0C21) (2.86)

and
n2
n1

= n0C12
A21

1

1 + n0C21
A21

(2.87)
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The line emissivity corresponds to the amount of energy emitted by the total
number of atoms :

‘ = n2A21h‹21 = n0n1C12h‹21
1

1 + n0C21
A21

(2.88)

We can now estimate easily the emissivity of the line in two simple regime :

1. Low density limit : in that case n0C21 π A21 :

‘ ¥ n0n1C12h‹21 (2.89)

which means that every upwards transition due to a collision rise to a down-
ward radiative transition.

2. High density limit : where n0C21 ∫ A21

‘ ¥ n1g2
g1

e≠h‹21/kBT A21h‹21 (2.90)

In that case, the emissivity of the line is determined by the conditions of
thermal equilibrium of the excited state ; not all the downward transitions
are now associated with photon emission, instead many downward transitions
are caused by collisions and we say that the line is collisionally de-excited.

There exists a critical density above which the line is predominantly collisionally
de-excited (collisional de-excitation rate higher than spontaneous emission rate)
and for the two level example this is : n0c ¥ A21/C21.
Note that generally : n0 ≥ ne Ã natoms Ã n, where n is the total gas density. Also,
n1, n2 Ã natoms Ã n. Therefore the emissivity expression becomes :

at n π n0c :‘‹ Ã n2 (2.91)
at n ∫ n0c :‘‹ Ã n (2.92)

(2.93)

N.B.: For systems in which there are more than two energy states which need to
be considered then the analysis is more complicated, but the same ideas apply and
an expression determined fro the critical density at which a given quantum state
becomes collisionally de-excited.

2.2.4 Astrophysics terminology
In Astrophysics, the timescales are so long that we may detect emission lines which
are not seen in laboratory (also called forbidden lines) because gases can not be
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Timescale Nature of line Example
Dipole short permitted Ha⁄6563

Quadrupole long forbidden [OIII]⁄ 5007
Intercombination Intermediate semi-forbidden CIII]⁄1909

Table 2.1: Notation of several types of emission lines in astrophysics. In the last
column: the letter gives the element, the roman numerical indicate the ionisation
state (I : neutral ; II : singly ionised, etc...), the wavelength is in Angstroms, the
square brackets indicate the nature of transition.

rarefied enough. The term forbidden is misleading; a more accurate description
would be “highly improbable.” The emissions result from electrons in long-lived
orbits within the radiating atoms—i.e., the transition from an upper energy level to
a lower energy level that produces the emissions requires a long time to take place.
As a result, emission lines corresponding to such atomic transitions are extremely
weak compared with other lines. In the laboratory, moreover, an excited atom
tends to strike another particle or the walls of the gas container before it emits a
photon, thereby further reducing the possibility of observation. There is a well-
defined astrophysical notation used to label these which emphasises the lifetimes
of the excited states (see Table2.1).

2.2.5 An example : the Hydrogen atom
Hydrogen is the most important element in the Universe : it is the first atom
formed after the Big-Bang (see previous chapter) and it is responsible for a vast
majority of light in the Universe. The electronic energy states are determined by :

�Emn = R
3 1

n2 ≠ 1
m2

4
(2.94)

where R is the Rydberg constant (R =1.09◊107 m≠1). Figure 2.3 shows several
transitions with the wavelength of the emitted photon.
Young stars are usually UV emitters and emit radiation at wavelength below the
Lyman edge (⁄=91.1753 nm). Therefore, the hydrogen in the surrounding of young
stars is usually ionised. Extended regions of photoionised hydrogen are produced
in the vicinity of young stars, also called HII regions (it is important to note that
these regions are not only composed of Hydrogen, they are also hosting metals in
various ionisation stages). Hot accretion disks around a supermassive black hole
can also create ionise region.
In the ionised gas, electrons recombine in H+ mostly in the upper levels and then
decay to the fundamental level via multiple transitions (generally all permitted
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Figure 2.3 : Level transition in an Hydrogen atom : transition to the fundamental state
(n = 1) are the Lyman transition, to level n = 2 the Balmer transition, etc...

transitions). The recombination rate is defined as :

— = –(T )npne (2.95)

where –(T ) is the recombination coe�cient. Therefore, the rate of recombination
passing through the i level to the j ≠ level is :

—iæj = –eff
iæjnpne (2.96)

where –eff
iæj is the e�ective recombination coe�cient which gives the probability

that recombination passes through the i æ j transition.
The emissivity of a recombination line is given by :

‘iæj = h‹iæj–eff
iæjnpne (2.97)

It is important to note that the intensity (and therefore the cooling capability)
of collisionally excited line drops at n > nc, relative to recombination lines (or
drops relative to other collisionally excited lines with higher critical density, such
as the "permitted" lines). As an example, the Broad Line Region (hereafter BLR)
is a very compact region (R <1kpc) surrounding accreting supermassive black
holes. In these regions, clouds are photo-ionised by the strong UV radiation field
emitted by the accretion disk and have a density of 1011cm≠3. As a consequence of
‘ Ã n2, the permitted and recombination lines (e.g. CIV⁄1549, H–, H—) emitted
by the BLR reach luminosities that are much higher, not only of the forbidden



2.3. HEATING AND COOLING 29

Figure 2.4 : Composite spectrum obtained by stacking 718 quasars spectra plotted as
⁄F(⁄) vs. rest-frame wavelength with the principal emission features identified. The flux
scale is in arbitrary units. From Francis et al. (1991).

lines from the bLR itself (e.g. [OIII] ⁄5007, which is undetected), but also much
more luminous than any line coming from the host galaxy, despite the size of the
latter being much larger (Fig. 2.4).

2.3 Heating and cooling

2.3.1 Definition
Heating and cooling of gas is of central importance to our understanding of the
formation of structure in the Universe. The net heating rate (Q) is defined as
the di�erence between the total heating rate (�(n, T )) and the total cooling rate
(�(n, T )) for the gas :

Q(n, T ) = �(n, T ) ≠ �(n, T ) (2.98)
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The equilibrium temperature of the gas is defined as the temperature when the
cooling rate equal the heating rate. The stability of this equilibrium state can be
found by considering deviations from equilibrium. For example, considering a gas
at constant pressure and defining �T = T ≠ TE , the enthalpy can be given by :

d�H

dT
= Q(T ) ¥ Q(TE) + �T

3
ˆQ

ˆT

4

P
(TE) (2.99)

but Q(TE) =0 then the gas will be thermally stable if :
1ˆQ

ˆT

2

P

---
TE

< 0 (2.100)

Finally, we can define a useful timescale over which gas will cool : the cooling time

as :

·c = U

� (2.101)

where U is the thermal energy of the gas.

2.3.2 The cooling curve
The cooling function � as a function of temperature and other physical conditions
is called the cooling curve (Figure 2.5). It provides an overall description of the way
in which gas will cool taking into account the di�erent physical processes, which
are e�ective over a wide range of temperatures and physical conditions. Detailed
calculations of cooling curves are available which incorporates di�erent processes
operation at di�erent temperatures. In general :

�(T ) =
ÿ

i

�i (2.102)

where the sum is over all processes contributing to the cooling at a given temper-
ature. In the following, we will consider some of the processes which contributes
to the details of this cooling curve and also heating processes.

2.3.3 Cooling by line emission
We have described in the previous section, that at high densities the emissivity of
a line is given by :

‘ = g1
g2

n1A21h‹12e≠�E12/kBT (2.103)

we also demonstrated that at low densities below the critical density for collisional
de-excitation, the emissivity is given by :

‘ = n0n1C12h‹12 (2.104)
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Figure 2.5 : Net cooling rate as a function of the temperature, also referred to the
cooling curve. The curve is plotted for several density ranging from 10≠4 to 0.1 cm≠3.
From Dalgarno & McCray 1972.
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We write the upwards collision rate in terms of the collision rate for downwards
transitions as :

C12 = g1
g2

C21e≠�E12/kBT (2.105)

In either limit (high or low density) for line emission to be an e�ective cooling
process the energy di�erence between the states must therefore be �E ≥ kBT .
Although hydrogen is very abundant in the Universe, the typical energy spacing
between the levels �E ≥10 eV for transitions out of the ground state. Therefore,
hydrogen only becomes important to cooling for temperature of order 104 K. That’s
why we can see a huge break in the cooling curve at T ≥104 K 2

There are some ions with energy spacings which corresponds to lower temperature.
For example, an important case is C+ for which the energy of the 2P1/2 æ2 P3/2 is
�E/kB =92 K. Collisional excitation can occur via collisions either with electrons
or neutral hydrogen atoms. For c+ ¡ e≠ collisions, the cooling rate is :

�C+ = nenc+8 ◊ 10≠33T ≠1/2 exp(≠92/T )J m≠3s≠1 (2.106)

We can also note other ions with appropriate transitions :

• Si+ (2P1/2 æ 2P 3/2) �E/kB =413 K

• O (3P2 æ 3P 1 ) �E/kB =228 K

• O (3P2 æ 3P 0 ) �E/kB =326 K

Note that in the low density regime (most cases) the cooling function and, therefore
the cooling time is proportional to n2. This has important implications for the
expected cooling timescale of gaseous systems, both on small and large scales, as
we shall see in the next lectures.

2.3.4 Cooling by free-free emission in ionised gas
For hot fully ionised gas (typically T ∫105 K), radiation is produced via Bremsstrahlung.
It is electromagnetic radiation produced by the deceleration of a charged particle
when deflected by another charged particle, typically an electron by an atomic nu-
cleus. The moving particle loses kinetic energy, which is converted into radiation
(i.e., photons), thus satisfying the law of conservation of energy. The term is also
used to refer to the process of producing the radiation. As demonstrated in PartII
EM course, the Bremsstrahlung emissivity is given by :

‘ff
‹ = µ0Z2e6

3fi2c‘2
0m2

1fim

6k

21/2
gff neniT

≠1/2e≠h‹/kT = a1gff neniZ
2T ≠1/2e≠h‹/kT

(2.107)
2kB =1.38◊10

≠23
J K

≠1
and 1 eV=1.60◊10

≠19
J
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The factor gff is a Gaunt factor which is tabulated and is included to accommodate
the results of detailed calculations in various limits.
Knowing that :

j‹ = ‘‹

4fi
(2.108)

j‹ = –‹B‹(T ) (2.109)

and B‹(T ) = 2h‹3/c2

exp (h‹/kBT ) ≠ 1 (2.110)

then the absorption coe�cient is given by :

–ff
‹ = µ0Z2e6c

24fi3‘2
0m2h

3
fim

3k

21/2
gff neni‹

≠3T ≠1/2
1
1 ≠ e≠h‹/kBT

4
(2.111)

The Rayleigh-Jeans limit is a limit for low energies (or short frequencies), such as
h‹ π kBT , therefore :

1 ≠ e≠h‹/kBT ¥ h‹/kBT (2.112)

then the absorption coe�cient becomes :

–ff
‹ = µ0Z2e6c

24fi3‘2
0m2h

1fimh2

3k3

21/2
gff neni‹

≠2T ≠3/2 (2.113)

= a2gff neniZ
2‹≠2T ≠3/2 (2.114)

Example of the hydrogen atom: We can use the above results to calculate the
thermal emission from fully ionised hydrogen at a temperature T . We will assume
we are in a Rayleigh-Jeans limit (i.e. h‹ π kT ) and the absorption coe�cient is
given by (Z = 1) :

–ff
‹ = a2gff neni‹

≠2T ≠3/2 (2.115)

if the distance through the region is L then the optical depth is given by :

·‹ = a2n2
eT ≠3/2

e ‹≠2gff L (2.116)

since in the case of a fully ionised hydrogen gas, we have ni = ne.
Detailed calculations show that gff Ã T 0.15‹≠0.1. We can therefore plot the bright-
ness as a function of the frequency, given that :

I‹ = B‹(T )(1 ≠ e≠·‹ ) (2.117)

In the two limits of an optically thin or optically thick region we have :

I‹ =
I

·‹B‹ ·‹ π 1
B‹ ·‹ ∫ 1
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Figure 2.6 : Spectrum of thermal bremsstrahlung. The indicated slopes are for two
regimes : optically thin and optically thick.

and
I‹ Ã

I
‹≠0.1 ·‹ π 1
‹2 ·‹ ∫ 1

Figure 2.6 shows an example of Bremsstrahlung for the hydrogen atom.
The cooling rate is found by integrating the quantity :

�ff =
⁄

‘ff
‹ d‹ (2.118)

at all frequencies up to the frequency of the cuto� given by the exponential term
in eq.2.107, which depends on T. Therefore we can rewrite the previous equation
as :

�ff Ã neniZ
2T 1/2

e ¥ aff neniZ
2T 1/2

e = 1.435 ◊ 10≠40neniZ
2T 1/2

e Wm3 (2.119)

Given that d�/dT > 0, then if the heating is constant, this results into a stable
cooling process.
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2.3.5 Cooling of molecular gas
In the cool molecular phase of the ISM, the excitation conditions for rotational

transitions of molecules 3 are well-matched to the typical temperature in molecular
clouds. From your Quantum Mechanics course, you have demonstrated that the
rotational states have energy levels given by :

EJ = J(J + 1)~
2

2I
= J(J + 1)B (2.120)

where I is the moment of inertia of the molecule.
The Einstein A coe�cient for a rotational transition can be written as :

Anm = 8fi2

3~c2 Z0‹3| < n| ‚d|m > |2 (2.121)

The molecule must have a permanent dipole ‚d = µ, then for the J + 1 æ J
transition, we can quote the QM result :

AJ+1,J = 8fi2

3~c2 Z0‹3| < J + 1|µ|J > |2 (2.122)

= 8fi2

3~c2 Z0‹3µ2 J + 1
2J + 1 (2.123)

with selection rules �J = ±1, �mJ = 0, ±1, or �J = 0, ±1.
The energy spacing between the level is :

h‹J+1,J = 2B(J + 1) (2.124)

Although H2 is by far the most abundant molecule, it has no permanent dipole mo-

ment hence it cannot have transitions �J = ±1, it can only undergoes quadrupole
transitions, i.e. �J = ±2. This causes H2 rotational transitions possible only be-
tween levels with high �E (corresponding to excitation temperature larger than
500K). Hence it is observable in the mid-IR only in rare warm molecule regions.
Therefore H2 transitions are not a good coolant of the bulk of the molecular gas.
However there are molecules which do have dipole transitions and with lower B,
hence transitions that can be excited at much lower temperature, typical of the
bulk of the ISM :

12CO J = 1 æ 0 115.27 GHz (2.125)
12CO J = 2 æ 1 230.54 GHz (2.126)

CS J = 1 æ 0 48.99 GHz (2.127)
NCN J = 1 æ 0 86.63 GHz (2.128)

and at ≥100 GHz, T = h‹/kB ≥ 5K. These rotational transitions are excellent
coolant of the cold molecular phase of the ISM.

3
by definition a rotational transition is an abrupt change in angular momentum
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2.3.6 Cooling by dust
Dust is one of the key element of the ISM, it accounts for ≥50% of the heavy
elements. Even though dust is ≥1% of the baryonic mass of the Galaxy, it accounts
for ≥40% of the luminosity. Dust grains are mainly produced by the stars at the
end of their life. Originally discovered by the fact that it provides significant
absorption at optical wavelength (due to the size of dust grains, ranging from 1nm
to 1µm with a mean size of about 0.1µm), it is now clear that dust is crucial to the
physics of structure formation. Dust grains are the solid phase of the ISM. The
smallest particles are just large molecules such as the family of polycyclic aromatic
hydrocarbons (PAHs). The larger particles are amorphous grain principally of
silicates and carbon, but with a more complex icy surface layer (mantle).
The main consequences of dust in the ISM are :

• Dust grains provides significant absorption at optical wavelengths referred
to, in this context, as extinction

• The grains absorb short wavelength photons (typically UV and optical),
which excite phonon4 modes within the grain giving the grain a characteristic
temperature, the grain then radiates thermally in the far- and mid-infrared

• The surface of dust grains acts as a catalysts for chemical reaction in the
ISM and the formation of large molecule (for example, most of the molecular
hydrogen H2 is formed on the surface of dust grains).

• The grains can also scatter photons elastically

Consider a grain of a single radius a and assume that scattering does not contribute
to dust heating (we only consider absorption of photons), the absorption coe�cient
of a spherical grain is then given by :

–ext(‹) = ng‡ext(‹, a) = ngQext(‹, a)‡a = ngQext(‹, a)fia2 (2.129)

where ‡a = fia2 is the cross section5 of the grain, ng is the number density of
grains and Qext(‹, a) is the e�ciency of extinction (relative to the cross section)
at a frequency ‹. This extinction coe�cient can be divided into terms, such as :

Qext = Qabs + Qsca (2.130)
4
by definition, a phonon is a collective excitation in a periodic, elastic arrangement of atoms

or molecules in condensed matter, specifically in solids and some liquids
5
by definition, the cross section is a measure of the probability that a specific process will take

place when some kind of radiant excitation (e.g. a particle beam, sound wave, light, or an X-ray)

intersects a localized phenomenon
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where Qabs is the e�ciency of absorption (radiation absorbed by the grain) and
Qsca is the e�ciency of scattering (radiation scattered in other direction). The
power absorbed by a single grain from an incident radiation field F‹ is given by :

⁄ +Œ

0
F‹‡aQabs(‹, a) d‹ (2.131)

The grain reaches an equilibrium temperature, Tg, in this radiation field. Accord-
ing to the Kircho� law 6, the emissivity is given by ‘ = 4fij‹ = 4fi–‹B‹(Tg). Hence
for a single grain the power radiated is :

4fi
⁄ +Œ

0
‡aQabs(‹, a)B‹(Tg) d‹ (2.132)

and in equilibrium the power absorbed must be equal to the power radiated, hence
if we know Qabs we can find Tg for a given incident radiation field. It can be shown
that for typical dust properties :

T eq
g Ã F 1/5

UV (2.133)

in particular, recalling that F = L
4fiR2 :

T eq
g [K] ¥ 40L1/5

39 R≠2/5
pc (2.134)

where L39 is the luminosity of the UV-optical radiation source in units of 1039

erg s≠1 and Rpc is the distance from the source in parsec.
Typically dust heated by UV emission reaches temperatures of order 100K in
star forming regions. If there is a significant amount of dust then the interstellar
medium is optically thick to the optical and UV radiation, but the resulting far-
infrared emission is completely optically thin and escapes resulting in e�cient
cooling (Figure 2.7). This process is certainly extremely important in very dusty
star-forming galaxies.

2.3.7 Radiative heating and cooling by recombination
Photons with energies greater than the ionisation potential (Ii) of a species lead to
the ejection of an electron with energy h‹ ≠Ii. This electron can then heat the gas
via collision processes. Some of the electron kinetic energy will lead to excitation
of electronic levels and subsequent re-radiation and hence no heating of the gas.
To illustrate this phenomena, we consider a cloud of pure hydrogen (typically a
nebula or a HII region). The ionisation rate is given by :

nH0Sı‡i (2.135)
6
For an arbitrary body emitting and absorbing thermal radiation in thermodynamic equilib-
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Figure 2.7 : Spectral Energy Distribution (SED) of a galaxy showing the unattenuated
emission (short wavelength) and the emission of dust (large wavelength). From Hayward
& Smith (2015)

where Sı is the flux of ionising photons, nH0 the density of neutral hydrogen and
‡i the ionisation cross section. In equilibrium, the ionisation rate must equal the
recombination rate, therefore :

nH0Sı‡i = n2
e–B (2.136)

here –B is the net recombination coe�cient and we have assume ne = ni.
The heating rate is given approximately by :

� = nH0Sı‡i(h‹ ≠ IH) (2.137)

since h‹ ≠ IH is the mean energy of ejected electrons (IH is the ionisation energy
of hydrogen, i.e. 13.6 eV). We assume the electrons are characterised by a tem-
perature Te with mean energy per electron of 3

2kTE . This kinetic energy is lost on
recombination, hence the cooling rate is :

� = n2
e–B

3
2kTe (2.138)

Equating heating and cooling rate gives :

nH0Sı‡i(h‹ ≠ IH) = n2
e–B

3
2kTe (2.139)

rium, the emissivity is equal to the absorptivity
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therefore :
Te = 2

3
h‹ ≠ IH

kB
(2.140)

If the ionisation radiation is from a central star, then we can approximate the emis-
sion is approximately that of a thermal emitter of temperature Tı and a reasonable
approximation is that h‹ ≠ IH ≥ kBTı implying :

Te ≥ 2
3Tı (2.141)

Typically Tı ≥ 3 ◊ 104 ≠ 6 ◊ 104 giving Te ≥ 4 ◊ 104 ≠ 8 ◊ 104.
In a gas with a high ionisation fraction, all of the electron energy is available to
heat the gas via collisions. In a mainly neutral gas, inelastic collisions give rise to
hydrogen (and metal) emission lines which escape the cloud and therefore not all
the electron energy is available for heating the gas. In cool mostly neutral clouds
where ionisation of metals (e.g. C, Si, Fe) occurs, this heating by starlight can
then be e�cient.
Similar arguments also apply to heating by X-rays and cosmic rays (energetic
ionised particles), which ionise principally hydrogen, and the emission of photo-
electrons from dust particles.

2.3.8 Mechanical heating
Mechanical heating can occur in many di�erent ways provided there is some mech-
anisms to dissipate kinetic energy and transform it into heat. The main processes
we will come across will be heating in shocks (which you met last year) and heating
in viscous accretion discs (from last term course). As a very good estimate, in a
strong shock all of the kinetic energy of the upstream gas is converted into internal
energy (heat) downstream of the shock.

2.4 The multi-phase ISM
We start o� by considering the two phases of neutral hydrogen. Equating the net
cooling rate to the net heating rate gives the equilibrium temperature as a function
of density (eq. 2.139). Figure 2.8 shows an ionised calculation where the heating
is principally due to photoelectrons from grains. From this, we can construct the
equilibrium pressure as a function of the number density :

• For the pressure shown, there are three equilibrium points (A, B and C)

• The middle point is however unstable ; if the gas is compressed slightly, the
pressure drops and the gas compresses further



2.4. THE MULTI-PHASE ISM 40

Figure 2.8 : Left : Equilibrium temperature versus number density ; Right : equilibrium
pressure versus number density.

• There are therefore two stable equilibrium points : one hot at low density
(A) and one cold at high density (B).

A model of this type explains the warm and cold hydrogen phases. Indeed, the gas
in the ISM is a multi-phase medium in which di�erent phases are in approximate
pressure balance.
Can we explain molecular clouds in this way ? The answer is NO. The masses of
a so-called giant molecular clouds is M ≥ 105M§ with a radius of ≥50 pc. The
gravitational potential energy is of order ≥ GM2/r while the thermal energy is of
order ≥ 3

2(M/mH)kBT , hence :

Egrav

Ethermal
≥ GMmH

rkBT
¥ 100 (2.142)

Such clouds are self-gravitating and are the sites for massive star-formation.
For the hot ionised phase it is useful to calculate the cooling time. Cooling at
≥5◊105 K is dominated by line emission from collisionnaly-excited ions and :

� ¥ 1.6 ◊ 10≠35neni

3
T

106

4≠0.6
W m≠3 (2.143)

and the cooling time for the gas with T ≥5◊105K and ne ≥ 3◊103m≠3 :

·c =
3
2nekBT

� ≥ 4 ◊ 106
3

T

5 ◊ 105

41.6 3
ne

3 ◊ 103

4≠1
yr (2.144)

The gas does not need a constant heating source, but still cools quickly on timescale
much shorter than those over which a galaxy evolves. The heating source is in
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Phase ntot (106 m≠3) T (K) M / 109M§ f
Molecular > 300 10 4.0 0.01

Cold neutral 50 80 3.0 0.04
Warm neutral 0.5 ≥5000 2.0 0.3
Warm ionised 0.3 10 000 ≥0.2 0.15
Hot ionised 3◊10≠3 3◊105 <0.02 0.5

Table 2.2: The di�erent phase of the neutral hydrogen in the ISM

fact shocks produced by supernova remnants ; the gas can however cool rapidly
especially in any region in which the density is slightly higher than typical value
and then condense to one of the denser phases.
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3.1. EQUATIONS OF HYDRODYNAMICS AND HYDROSTATIC
EQUILIBRIUM 433. Gravitational stability
and instability

Examples ... which might be
multiplied ad libitum, show how
di�cult it often is for an
experimenter to interpret his
results without the aid of
mathematics.

— John William Strutt Rayleigh

In this chapter, we consider the physics of isolated self-gravitating gaseous systems
(clouds). We will look at the stability of these systems as a first step to understand
gravitational collapse and star formation. You met some of this material last year
in the Astrophysics fluids course, but we will now consider the physics in more
details.

3.1 Equations of hydrodynamics and hydrostatic equi-
librium

The equations describing the hydrostatic equilibrium 1 of a cloud of gas are essen-
tially the same equations which describe stellar structure.
In fluid dynamics, the Euler equation is a quasilinear hyperbolic equation governing
adiabatic and inviscid flow (viscosity equal to 0):

fl
ˆv̨

ˆt
+ fl(v̨ · Ò)v̨ = ≠ÒP ≠ flÒ�g (3.1)

where v is the flow velocity, fl the density of the fluid, P the mechanic pressure and
�g the gravitational potential. In equilibrium (v = 0), the Euler equation reduces

1
By definition, hydrostatic equilibrium is the condition of a fluid or plastic solid at rest, which

occurs when external forces, such as gravity, are balanced by a pressure-gradient force.
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to :
≠ ÒP ≠ flÒ�g = 0 (3.2)

The Poisson’s equation for gravity gives the gravitational potential :

Ò2�g = 4fiGfl (3.3)

The equation of state for the gas is that for an ideal gas :

p = flkT

µ
(3.4)

where µ is the mean mass per particle.
Finally, we also note the equation of continuity :

ˆfl

ˆt
+ Ò · (flv̨) = 0 (3.5)

In general, we also need an equation describing the energy flux : the most general
form is complicated and in the following sections we will make some approximations
which avoid this complication.

3.2 The isothermal sphere
The simplest example of a system in which thermal pressure and self gravity give
rise to a stable configuration is the isothermal sphere. We will use this as the
equilibrium model in discussion of gravitational collapse.
We assume :

• a spherical symmetry

• the gas has a uniform temperature T

• the equation of state is given by :

P = fl
kBT

µ
= a2

T fl (3.6)

where a2
T = kBT/µ is the isothermal sound speed

2

With these assumptions, the spherically symmetry equations of hydrostatic equi-
librium become :

≠ 1
fl

dP

dr
≠ d�g

dr
= 0 (3.7)

1
r2

d
dr

3
r2 d�g

dr

4
= 4fiGfl (3.8)

2
the speed of sound is the speed at which pressure disturbances travel in a medium
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3.2.1 Singular isothermal sphere
In this first section, we will try to get the solution for a singular isothermal sphere.

The gravitational force is given by :

≠ flÒ�g = ≠GMfl

r2 (3.9)

Therefore, we can find one solution to equation 3.7 in terms of mechanical pressure
:

dP

dr
= ≠GMfl

r2 (3.10)

where the mass, M , is the mass within the radius r such as :

M = M(r) = 4fi
⁄ r

0
fl(rÕ)rÕ2 drÕ (3.11)

or in di�erential form :
dM

dr
= 4fir2fl (3.12)

We can therefore rewrite the isothermal equation of state (eq:3.6), we obtain :

dfl

dr
= ≠GM

a2
T

fl

r2 (3.13)

It is straightforward to verify that the following form of the density profile satisfies
these equations :

fl(r) = a2
T

2fiGr2 (3.14)

From the previous equations, we can determine several properties of the cloud as
follow :

1. its total mass can be found by integrating out to the radius of the cloud r0 :

M0 =
⁄ r0

0

a2
T

2fiGr2 4fir2 dr = 2a2
T r0
G

(3.15)

2. the boundary of the cloud has to be in equilibrium, there must be an external pressure,
P0, which equals the pressure at the surface of the cloud :

P0 = a2
T fl(r0) = a4

T

2fiGr2
0

(3.16)
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3. The cloud radius and the isothermal sound speed can be estimated from the
mass of the gas and the external pressure. Given the mass of the gas, M0,
and external pressure p0, the cloud radius r0 and isothermal sound speed,
a2

T (or equivalently temperature) can be found.

4. Although the density and pressure of the cloud diverge as r æ 0 the total
mass, internal energy, etc... are bounded.

3.2.2 General solution
We now seek the general solution for the isothermal sphere.

Returning to the original spherically symmetric force equation (eq. 3.7), we have:

≠ 1
fl

dp

dr
≠ d�g

dr
= 0 ∆ ≠a2

T

fl

dfl

dr
= d�g

dr
(3.17)

and integrating:

≠ ln fl = �g

a2
T

+ constant or fl = flce
≠�g/–2

T (3.18)

where flc is a constant.

Introducing the dimensionless variables Â = �g/a2
T and › = (4fiGflc/a2

T )1/2r,
eq.3.8 becomes :

1
›2

d
d›

3
›2 dÂ

d›

4
= e≠Â (3.19)

The singular solution of the previous equation is:

Â = ln(›2/2) (3.20)

At the center of the cloud (r = 0, then › = 0), the gravitational force must vanish,
therefore :

dÂ

d›

----
›=0

= 0 (3.21)

We also require Â(› = 0) = 0 which fixes flc to be the core density.
Unfortunately there is no analytic solution which matches these boundary condi-
tions and the equation must be integrated numerically.
We can estimate the total mass within a radius r0(›0) as follow :

M0 = 4fi
⁄ r0

0
flr2 dr (3.22)

= 4fiflc

1 a2
T

4fiGflc

23/2 ⁄ ›0

0
e≠Â›2d› (3.23)

(3.24)
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Figure 3.1 : Evolution of the dimensionless mass of a clouds (m = P 1/2

0
G3/2M0/a4

T )
as a function of the density contrast. It clearly shows there is a mass (m1) at which the
cloud is in equilibrium.

From eq:3.19, we deduce that

M0 = 4fiflc

A
a2

T

4fiGflc

B3/2 3
›2 dÂ

d›

4

›=›0

(3.25)

We still have the boundary condition P0 = a2
T fl(r0).

There is an additional parameter flc compared to the singular solution, hence the
solution is not fully constrained by M0 and P0, and we must additionally specify
flc, a2

T , or r0.
It could also be useful to consider a whole family of solutions described by the
ratio flc/fl0 ("density contrast") where fl0 = fl(r0). The variation of mass as a
function of the density contrast is shown in Figure3.1, where it is clear that for a
given external pressure p0 and temperature (aT ) there is a maximum mass (m1)
for which the cloud can be in equilibrium.
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3.3 The polytropic sphere
Polytropes are self-gravitating gaseous spheres that were, and still are, very useful
as crude approximation to more realistic stellar models. Last year, in the as-
trofluids course you studied the polytropic sphere with an equation of state of the
form:

P = Kfl1+ 1
n = Kfl� (3.26)

where n is the polytropic index (n = 0 for rocky planets, n = 1.5 is a good model
for fully convective star cores - like those of red giants- , brown dwarfs, giant
gaseous planets - like Jupiter). In general as the polytropic index increases, the
density distribution is more heavily weighted toward the center (r = 0) of the
body. Case with n = Œ is the isothermal case we studied at the previous section.

For the general polytropic case, it is easy to demonstrate that the temperature
always follows the gravitational potential :

kBT = 1 ≠ �
� µ�g (3.27)

3.4 Virial equilibrium for the self-gravitating sphere
In the following section, we will look at the same problem but with a di�erent view
which throws away the internal detail of the cloud but which enables us to more
easily examine whether the solutions we find are stable.

The equations of hydrostatic equilibrium in terms of mass are :

dP

dr
= ≠GMfl

r2 (3.28)

dM

dr
= 4fir2fl (3.29)

We can rewrite these equations treating mass as an independent variable, such as:

dr = dM

4fir2fl
(3.30)

hence,
4fir3dP = ≠4firGMfl dr = ≠GM

r
dM (3.31)

We know that 4fir3 = 3V , then :
⁄ V =V0,p=p0

V =0,p=pc

3V dP = ≠
⁄ M0

0

GM

r
dM (3.32)
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A useful mathematical method to solve the previous equation is "integrating by
parts" such as :

⁄ b

a
u(x)vÕ(x)dx = [u(x)v(x)]ba ≠

⁄ b

a
uÕ(x)v(x) dx (3.33)

Therefore, integrating the left hand side by parts give :

3 [PV ]V0,p0
0,pc

≠ 3
⁄ V0,p0

0,pc

P dV = ≠
⁄ M0

0

GM

r
dM (3.34)

The first term of the previous equation evaluates to 3P0V0 = 4fir3
0P0; the right

hand side is just the gravitational potential energy of the cloud:

� = ≠
⁄ M0

0

GM

r
dM (3.35)

and the final term can be re-written treating the mass as an independent variable,
hence dV = dM/fl, and finally :

3
⁄

p

fl
dM + � = 4fir3

0p0 (3.36)

This equation is always valid since we have made no assumption about the internal
structure of the cloud.

3.5 Stability of an isothermal cloud
In the following section, we will consider the case of an isothermal sphere. We can
therefore simplify the previous equation, considering that : P = a2

T fl:

3
⁄

P

fl
dM = 3a2

T M0 = 3kBT

µ
M0 (3.37)

Also � ≥ ≠3
5GM2

0 /r0, the virial equilibrium then becomes:

3kBT

µ
M0 ≠ 3

5
GM2

0
r0

≠ 4fir3
0P0 = 0 (3.38)

We can use this equation to discuss the stability of a general cloud : if this equation
is = 0, the cloud is in equilibrium. However if it is <0 the clouds will collapse, and
if it is positive, the cloud will expand.
For a cloud of mass M0 and temperature T in equilibrium in an environment of
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Figure 3.2 : Equilibrium pressure as a function of the cloud radius.

pressure p0, we can find the relationship between p0 and the cloud radius, here
written as r since we are treating it as an independent variable :

P0 = 3kBTM0
4fir3µ

≠ 3
20fi

GM2
0

r4 (3.39)

The maximum in the curve (obtained by derivating the previous equation) occurs
at a radius :

rmax = 4
15

GM0µ

kT
(3.40)

with a maximum pressure of :

Pmax = cg

3
kBT

µ

44 1
G3M2

0
(3.41)

where cg depends on the precise value of the gravitational potential energy term.

We are now able to discuss the stability of a self-gravitating isothermal cloud:

• with a given mass: Suppose that we have a cloud of mass M0 which is in
equilibrium with r > rmax, if the external pressure is increased by a small
amount, the system will now lie above the equilibrium line in Figure 3.2 ;
the virial equation shows that the cloud must shrink. Provided p0 < pmax,
the cloud can collapse to a new equilibrium radius. If p0 > pmax, the cloud
is not stable and thermal pressure can not halt the collapse.
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• with a given internal pressure:, a cloud will become unstable to collapse when
its mass exceed :

MBE = c1/2
g

3
kT

µ

42 1
G3/2P 1/2

0
= c1/2

g
a3

T

fl1/2
0 G3/2

(3.42)

The previous equation gives the Bonnor-Ebert mass, MBE .

On Figure 3.1, there is a maximum near flc/fl0 ≥ 14.1 when the dimensionless
mass is equal to 1.18 :

M = 1.18a4
T

1
G3/2P 1/2

0
≥ MBE (3.43)

This is also a point limiting stability. If we consider a cloud of given flc/fl0 and with
an increasing external pressure : this results in an increase of m. For stability the
internal pressure of the cloud must increase, but at constant T this requires fl in
the cloud to increase and hence flc since the density is a monotonically decreasing
function of radius. This occurs when we are to the left of the peak in Figure 3.1,
i.e. we have flc/fl0 < 14.1.

3.6 Jeans instability
In the following section, we will describe another way of examining the stability
of gravitational collapse. Here we start with the equations of hydrodynamics and
do a perturbation analysis.
Our initial condition (subscript ’0’) is to assume that the fluid is stationary with
constant density and pressure, i.e.:

v0 = 0 fl0 = constant P0 = constant (3.44)

The unperturbated equations are just the equations of hydrodynamics.
Now we introduce perturbated quantities (subscript ’1’) :

fl = fl0 + fl1 �g = „0 + „1 (3.45)
v̨ = v̨0 + v1 P = P0 + P1 (3.46)

As previously, the unperturbated potential is assumed to satisfy :

Ò2„0 = 4fiGfl0 (3.47)

Unfortunately no solution exists when fl0 is a constant. Then, to first order, in
small quantities we have :



3.6. JEANS INSTABILITY 52

• Continuity equation:

fl0(Ò · v̨1) = ≠ˆfl1
ˆt

(3.48)

• Euler equation :
ˆv1
ˆt

= ≠Ò„1 ≠ ÒP1
fl0

(3.49)

• Gravity
Ò2„1 = 4fiGfl1 (3.50)

• We further assume isothermal behaviour :

P1 = a2
T fl1 (3.51)

Di�erentiating the continuity equation with respect to time, we obtain :

ˆ

ˆt
(Ò · v̨1) = ≠ 1

fl0

ˆ2fl1
ˆt2 (3.52)

and taking the divergence of the Euler equation :

ˆ

ˆt
Ò · v1 = ≠Ò2„1 ≠ a2

T

fl0
Ò2fl1 (3.53)

Combining the two previous equations gives :
A

Ò2 ≠ 1
a2

T

ˆ2

ˆt2 + 4fiGfl0
a2

T

B

fl1 = 0 (3.54)

This is similar to the wave equation, and therefore we look for wave-like solutions
of the form :

fl1 Ã ei(k̨·r̨≠Êt) (3.55)

which gives a dispersion relation :

a2
T k2 ≠ Ê2 = 4fiGfl0 (3.56)

N.B.: in the two previous equation k is the wave number, and not the Boltzmann
constant
The system is unstable when the modes grow, i.e. Ê2 < 0 and therefore we have a
condition for limiting stability when Ê2=0 and this defines a critical wave number
:

k2
J = 4fiGfl0

a2
T

= 4fiGµ

kBT
fl0 (3.57)
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or a characteristic wavelength of ⁄J = 2fi/kJ .

The total mass within a sphere of diameter equal to the Jeans Wavelength of
MJ = 4

3fi
1

⁄
2

23
fl0 and solving :

⁄J

2 = 3
fi2

GMJµ

kBT
(3.58)

This is almost exactly the same form as the expression of rmax we obtained from
the virial analysis, except we now have what we call the Jeans Mass : MJ ≥ MBE .
For ⁄ > ⁄J or M > MJ the modes grow exponentially.
The Jeans Mass is usually defined as :

MJ

M§
= 1.0 ◊

1 T

10K

23/2
◊

1 nH

2 ◊ 1010m≠3

2≠1/2
(3.59)

Note the strong dependence of the Jeans mass on temperature, hence the impor-
tance of gas cooling. The latter can reduce the temperature hence allowing the
collapse of less massive clouds and the formation of low mass stars.
It is also interesting to note that in the early Universe, the lack of metals and
dust, and (as a consequence) the much reduced molecular gas content, implies
much reduced cooling of the gas clouds, which is expected to lead to the formation
of hypermassive stars.

3.7 Magnetic fields
One important constituent of the ISM are magnetic fields: these can provide addi-
tional forces which can act to stabilise clouds against gravitational collapse. The
solution of the Euler equation in the case of a magnetic field is given by :

P0 = 3kBTM0
4fir3

0µ
+ 1

4fir4
0

1
—

�2
M

2µ0
≠ 3

5GM2
0

2
(3.60)

where — is a constant, and �M is the magnetic density field. This relation is
similar to the non-magnetic one, but where the e�ective mass is decreased by
the magnetic field. The pressure described by the previous equation will be a
monotonically decreasing function of r if :

—
�2

M

2µ0
>

3
5GM2

0 (3.61)

and the cloud will always be stable if �M is a constant. If the reverse condition is
true we have a similar situation to that we have already considered but with an
e�ectively reduced gravitational mass for the cloud.
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Cloud type ntot L T M B
(106 m≠3) (pc) (K) M§ (nT)

Giant molecular cloud 100 50-500 15 105 1?
Dark cloud complex 500 10 10 104 1?

Individual dark cloud 103 2 10 30 2-10
Dense core 104 0.1 10 10 2-10

Table 3.1: Properties of several Cloud types

3.8 Application to molecular clouds
We have already seen that the molecular phase of the ISM has much higher den-
sities and lower temperatures than either the atomic or ionised phases (Tab. 2.2)
and discussed the structure of Giant Molecular Clouds. In the following, we apply
the idea we just developed in this chapter to analyse the stability of molecular
clouds (Tab. 3.1).
We described Giant Molecular Clouds as swarms of more coherent clumps. The
Jeans mass for gas with nH ≥2000 and T ≥10K is ≥3M§. This is two orders
of magnitude below the masses of the individual clouds and of order the mass
of typical dense cores. There must be an additional form of support. Zeeman
splitting 3 provides a method for measuring the magnetic fields although this has
only proved possible towards a handful of dark clouds at the present time, possible
fields strengths are also shown in Tab.3.1.
From the magnetic virial equation we can find the maximum cloud mass which
could be supported against its own self-gravity by magnetic pressure alone. We
have :

M2 = 5
3G

—
fi2r4B2

2µ0
(3.62)

or
M ¥

3
B

nT

4 3
r

pc

42
M§ (3.63)

Inserting the numbers from Tab.3.1 it suggests that most dark clouds can be
stabilised by magnetic e�ects :

• for dense cores M ≥MJ

• the density ratio in dense cores can also be measured an flc/fl0 ≥10 typically.

The analyse ignores one further possible source of cloud support which is bulk
random motions of gas-turbulence.

3E�ect of splitting spectral line into several components with a static magnetic field
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4. Gravitational collapse

We can not solve our problems
with the same level of thinking
that created them

— Albert Einstein

In the following chapter, we will consider the collapse of self-gravitating clouds
under gravity. We will first consider this in the context of a cloud (or dense core)
within a galaxy, but we shall see later that this gives a great deal of insight to the
collapse of gas on galactic-scales.

4.1 Free-fall time

By definition, the free-fall time (tff ) is the characteristic time that would take a
body to collapse under its own gravitational attraction, if no other forces existed to
oppose the collapse. As such, it plays a fundamental role in setting the timescale
for a wide variety of astrophysical processes—from star formation to helioseismol-
ogy to supernovae—in which gravity plays a dominant role.

Consider an initially homogeneous spherical cloud of gas of density fl0, radius R
and mass M0. The cloud has no internal pressure throughout the collapse. Gas
molecules initially at radius r0 will have a mass of gas M within this radius and
during collapse this remains constant, therefore from Newton gravity the equation
of motion for these molecules is :

ˆ2r

ˆt2 = ≠GMr

r2 (4.1)

Therefore :
ˆ

ˆt

3
ˆr

ˆt

4
= ≠GMr

r2 (4.2)
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Integrating over dt, gives :

1
2

3
ˆr

ˆt

42
=

5
GM

r

6r

r0
= GM

r0

3
r0
r

≠ 1
4

= 4fi

3 r2
0fl0G

3
r0
r

≠ 1
4

(4.3)

By making the substitution r = r0sin2◊, we can integrate this equation and find
that the gas arrives at the centre at the free-fall time :

tff =
3 3fi

32Gfl0

41/2
(4.4)

This is the same result for every starting point in the cloud and therefore can be
applied to any radius. In terms of the initial mass and radius of the whole cloud,
we get :

tff =
1fi2

8
R3

GM0

21/2
¥

1 R3

GM0

21/2
(4.5)

4.2 Inside-out collapse
We begin our discussion of collapse and protostellar formation by considering the
collapse of an isolated cloud without the presence of magnetic fields. We further
simplify the problem by assuming a spherical symmetry and isothermal behaviour.
We assume that there is a central sink for inflowing material - the growing central
condensed object (e.g. a protostar). The equations governing the dynamics of
the problem are just the Euler equation and equation of continuity. The radial
equations are:

ˆvr

ˆt
+ vr

ˆvr

ˆr
= ≠a2

T

fl

ˆfl

ˆr
≠ GMr

r2 (4.6)

ˆfl

ˆt
+ 1

r2
ˆr2flvr

ˆr
= 0 (4.7)

where fl = fl(r, t) and
Mr(t) =

⁄ r

0
4fir2fl(r, t) dr (4.8)

Di�erentiating eq.4.8 and using the equation of continuity eq.4.7, we find :

ˆMr

ˆt
= ≠4fir2flvr (4.9)
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4.2.1 Similarity Analysis
We now transform these equations to dimensionless form. The independent vari-
ables are r and t, the constants are G and aT , and the variables are fl(r, t), v(r, t)
and M(r, t).

• The only way to form a dimensionless length is :

x = r

aT t
(4.10)

• The variables are then given by :

Mr(r, t) = a3
T t

G
m(x) (4.11)

fl(r, t) = 1
4fiGt2 –(x) (4.12)

v(r, t) = aT —(x) (4.13)

• We are e�ectively doing a transformation of coordinates from (r, t) to (x, t)
in which we find the time dependence disappears

• Since dx = 1
aT tdr ≠ r

aT t2 dt, we have :

ˆ

ˆr

----
t

= 1
aT t

ˆ

ˆx
(4.14)

ˆ

ˆt

----
r

= ˆ

ˆt

----
x

+ ˆx

ˆt

----
r

ˆ

ˆx
= ˆ

ˆt

----
x

≠ x

t

ˆ

ˆx
(4.15)

Using these definitions the above equations reduce to

m = x2–(x ≠ —) (4.16)

[(x ≠ —)2 ≠ 1] 1
–

d–

dx
=

5
– ≠ 2

x
(x ≠ —)

6
(x ≠ —) (4.17)

[(x ≠ —)2 ≠ 1]d—

dx
=

5
–(x ≠ —) ≠ 2

x

6
(x ≠ —) (4.18)

These equations must be solved numerically, but we can learn a great deal
from their form.

• an exact solution of these equations is the singular isothermal sphere, as we
expect :

— = 0 – = 2
x2 m = 2x (4.19)

This is a static, but unstable solution.
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• There is a critical point for the flow when both side of the previous di�erential
equations vanish, this occurs when :

x ≠ — = 1, – = 2
x

(4.20)

• This critical point condition is satisfied by the singular isothermal sphere for
x = 1 :

– A possible form of solution is that there is a change in character at
x = 1

– For x > 1 the solution is the singular sphere
– For x < 1 the solution has explicit infall
– This requires that the initial condition for the cloud is that of the singu-

lar isothermal sphere ; if the initial density exceeds that of the singular
isothermal solution then we expect some infall at all radii, but with a
significant increase at x ≥1

• this characteristic form of solution leads to the concept of inside-out col-

lapse with the inner regions collapsing and the outer regions stationary until
the transition point expands and gas joins the infall : the transition point
expands into the cloud with r = aT t, i.e. at the speed of sound.

The full equations have to be solved numerically. The initial condition we choose:
(i) we consider an equilibrium isothermal sphere and (ii) we use the boundary
conditions appropriate to that initial state - for example constant external pressure.
We also assume that there is a sink for matter reaching the origin - this will turn
into a protostar. A physically interesting case to consider is that of a cloud which
is marginally unstable to begin, i.e. with a mass slightly larger than the Bonnor-
Ebert / Jean Mass and perturb the initial state slightly and follow the evolution
(Figure 4.1).

4.2.2 Physics Analysis
Using the above analysis as a guide, we can develop a good physical model for the
collapse. Important is the concept of the critical point at which the nature of the
solution changes at x ≥1.
We consider an initial condition for the cloud equal to the singular isothermal
sphere and consider the propagation of the transition point into the cloud :

• The transition point moves outwards as a rarefaction wave with only the
gas inside of the radius Rff ¥ aT ◊ t moving inward. We have inside-out

collapse.
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Figure 4.1 : Velocity during the collapse of an isothermal sphere with mass slightly
above the Jeans mass. · = 0 (the dotted-dashed line) signifies the start of the creation of
the protostar as mass starts to flow into the sink. The time · is given as a function of tff .
From Foster & Chevallier 1993
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• After a short fraction of a free-fall time a large fraction of the gas within this
radius is moving supersonically with the velocity v increasing to the center -
r/|v| is less than the sound crossing time

• Gas is falling onto a growing central object - the protostar - mass Mı ; close
to this protostar gas is approximately in free fall with vF F ¥ (2GMı

r )1/2

• At the transition point, the gas moves approximately sonically :

vff ¥ at and aT ≥ MıG

Rff
(4.21)

• The rate of growth of Mı is determined by accretion at a rate :

dM

dt
= lim

ræ0
≠4fir2vfl (4.22)

• Transition to the free-fall collapse occurs at radius Rff such that vff ¥ aT ,
i.e. a2

T ≥ MıG
Rff

.

• The solution shows near constant accretion with dM
dt ¥ a3

T
G

indeed if we assume a constant accretion rate then Mı = dM
dt ◊ t and therefore :

dM

dt
¥ Mı

t
¥ a2

T

G

Rff

t
¥ a3

T

G
(4.23)

The density profile in this region must satisfy :

fl =

dM

dt
4fir2|v| = Ṁ

4fir2vff
= Ṁ

4fir3/2Ô
2GMı

(4.24)

A distance R ∫ Rff the solution must approach that of the isothermal sphere
with a large density contrast, i.e. fl Ã 1/r2, the singular sphere solution.
The change in slope from the outer singular isothermal sphere (fl Ã r≠2) to the
inner free-fall region (fl Ã r≠3/2) implies a "rarefaction wave".
Inserting values, the accretion rate for the growth of the protostar is :

Ṁ ¥ 2 ◊ 10≠6
3

T

106K

43/2
M§yr≠1 (4.25)
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5.1. BASIC PHYSICS OF OBJECT FORMATION 635. From gas cloud to col-
lapsed object

That is one of the things that has
come out of the discovery of
pulsars - more knowledge about the
space between the stars.

— Dame Susan Jocelyn Bell
Burnell

In previous chapter, we have considered the equilibrium and then collapse of an iso-
lated gas cloud. We now apply this physics to the formation of a central collapsed
object forming at the centre of the cloud. Although we will use the formation of
star, or more strictly a protostar as our example in this chapter, many of the ideas
will be used again when we consider the formation of other collapsed objects in
particular galaxies.

5.1 Basic physics of object formation

If the cooling time in the gas is much shorter than the collapse time (·c < t),
the system will evolve approximately isothermally. The shortest collapse time is
the free-fall time, therefore we can say that if the cooling time is shorter than
the free-fall time (·c < tff ), then the cloud will collapse approximately isother-
mally. From the way the Jeans mass depends on the temperature T and density
fl (MJ Ã T 3/2fl≠1/2) we can see that the Jeans Mass decreases. This results in
smaller regions of the cloud having the ability to collapse in a process called frag-
mentation, which we will discuss in the next chapter.

The increasing density has another consequence however :

• The optical depth is given by · = –R = flŸR (eq. 2.28). Assuming that the
mass in the collapsing object is constant : R Ã fl≠1/3 and hence · Ã fl2/3.
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• At some point, the collapsed object, or as we will now call it the core, becomes
optically thick (· > 1), cooling is then very ine�cient and the core ceases to
cool.

• It will in general continue to collapse as more mass is added due to accretion
from the surrounding cloud because of the inside-out collapse. The temper-
ature of the core now rises as the collapse proceeds adiabatically.

5.2 Evolution of the first core
From the discussion in the previous section, we see that the collapse of an isolated
gas cloud results in what we call the first core, which is when the initial collapse
ceases to be isothermal. We can apply the virial theorem to this first core, which is
mainly composed of molecular hydrogen. Taking the gravitational potential energy
to be ≥ ≠3

5
GM2

R and neglecting external pressure and magnetic fields in comparison
to the thermal and gravitational terms we can estimate the temperature of the core:

T ¥ µ

5kB

GM

R
¥ 850

3
M

5 ◊ 10≠2M§

4 3
R

5 AU

4≠1
K (5.1)

The accretion rate onto this core is, as we previously calculated:

Ṁ ¥ 2 ◊ 10≠6
3

T

106K

43/2
M§ yr≠1 (5.2)

Further mass addition, together with decreasing R, means that the temperature
soon exceeds 200 K, and collisional dissociation of H2 begins (although kBT is
much less than the dissociation potential). This phase change is crucial ; further
mass addition happens with a very much slower rise in temperature. The central
region of atomic gas has a significant density gradient and eventually undergoes
collapse to form a very dense central core (c.f. instability of an isothermal sphere
with large density contrast).

5.3 Structure around the protostar
The collapse of the first core gives a protostar of mass ≥0.1M§ and radius of
several R§. From the virial theorem this gives T ≥105K, the density is now
≥10≠2 g cm≠3 and this really can be considered a protostar. We will now consider
the environment of this protostar.
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5.3.1 Accretion luminosity
Accretion occurs onto the protostar via the inside-out collapse of the cloud. We
start by considering the energetics of the protostar in more detail. Since the
protostar forms from cold, low density gas, we can take the initial thermal and
mechanical energy of the gas, then energy balance requires :

Ugr + Uth + Ep + Lrt = 0 (5.3)

where Ugr is the gravitional potential energy of the protostar (Ugr ¥ ≠GM2
ı /Rı)

; its internal energy from the virial theorem is Uth = ≠Ugr/2; Ep is the enery
necessary to change the phase of the gas (i.e. dissociate and ionise the original
molecular gas), and Lr is the mean energy radiated over the formation time of the
protostar t.
For an initial hydrogen fraction X and helium fraction Y , we have :

Ep = XMı

mH

5
Ed(H)

2 + Ei(H)
6

+ Y MıEi(He)
4mH

(5.4)

where Ed(H) is the dissociation energy of H2 (Ed(H) =4.2 eV), Ei(H) =13.6 eV
and Ei(He)=75 eV are the total ionisation potential of H and He respectively.
If Lr=0, the protostar would have a radius of :

Rmax = GM2
ı

2Ep
= 60

3
Mı

M§

4
R§ (5.5)

which is much larger than the observed size of T Tauri stars which are the imme-
diate descendants of the protostars we are considering. This implies that Lr ◊ t is
comparable to the first term, i.e. most of the excess energy is radiated away ; Lr

must be close to the accretion luminosity :

Lr ¥ Lacc = GMıṀ

Rı
= 61

A
Ṁ

5 ◊ 10≠5M§yr≠1

B 3
Mı

M§

4 3
Rı

5R§

4
(5.6)

5.3.2 Accretion shock and dust envelope
The accreting gas is infalling at close to the free-fall velocity :

vff =
32GMı

Rı

41/2
= 280

3
Mı

M§

41/2 3
Rı

5R§

4≠1/2
km s≠1 (5.7)

This greatly exceeds the sounds speed in the gas and a strong shock forms with
vs ¥ vff giving a post-shock temperature of order 106 K ; at this temperature
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there is significant UV and soft X-ray production. This whole region is optically
thick and radiates with an e�ective temperature such that :

Lacc ¥ 4fiR2
ı‡BT 4

eff (5.8)

or

T ¥
A

GMıṀ

4fi‡BR3
ı

B1/4
= 7300

A
Ṁ

5 ◊ 10≠5M§yr≠1

B1/4 3
Mı

M§

41/4 3
Rı

5R§

4≠3/4
K

(5.9)
Surrounding the star, the gaseous envelope also contains dust. The UV flux pro-
duced at the stellar surface is able to vaporize dust grains within a region called
the opacity gap out to a radius known as the dust destruction front.
Outside of this radius the dust absorbs the radiation and re-radiates. In the dusty
layer, the dust temperature must drop until the layer becomes optically thin to
the re-emission of infrared radiation from the dust. This occurs at a radius Rphot

such that :
flŸRphot = 1 (5.10)

and
Lacc = 4fiR2

phot‡BT 4
phot (5.11)

5.4 Evolution of the protostar
We now turn our attention to the structure and evolution of the protostar itself,
also referred as stellar evolution. This could be the topic of an entire course, and
we will only discuss it briefly in the following. Few analytical calculations are
possible, but we must rely largely on the results of numerical simulations to guide
our understanding of the physics.

5.4.1 Protostellar structure during accretion
The structure of the protostar will be governed by the equations of hydrostatic
equilibrium plus equations describing the thermal structure of the protostar - these
are just the equations of stellar structure you met last year, although the boundary
conditions are now di�erent as discussed later.
The first equations are identical to those we met in our analysis of hydrostatic
equilibrium of a cloud except that everything is now a function also of time :

ˆP

ˆr
= ≠GMfl

r2 (5.12)

ˆM

ˆr
= 4fir2fl (5.13)
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Figure 5.1 : The environment of a protostar. From Stahler 1991
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we again assume an ideal equation of state :

P = flkT

µ
(5.14)

We then apply the first law of thermodynamics to obtain an equation for the heat
production :

flT
ˆS

ˆt
= fl‘ ≠ Ò · F̨ (5.15)

where F is the radiative flux defined as :

F = L

4fir2 (5.16)

hence :
ˆL

ˆr
= 4fir2fl‘ ≠ 4fir2T

ˆS

ˆt
(5.17)

This di�ers from the equation you had last year by the inclusion of the time
derivative of the entropy. If the heat is transported by radiative di�usion we also
have:

L

4fir2 = ≠4acT 3

3flŸ

ˆT

ˆr
(5.18)

These equations must be combined with a set of boundary conditions. In outline
these are:

• The mass and luminosity go to zero as r æ 0

• The surface luminosity of the protostar itself is given by Lı ≠ Lacc

• The surface pressure of the protostar must balance the momentum flux, or
ram pressure of the infalling gas which is ≥ flv2

ff giving :

P (r0) = Ṁ

4fi

32GMı

R5
ı

41/2
(5.19)

The results of a numerical integration give for the accretion rate Ṁ = 1 ◊
10≠5M§yr≠1. This is shown in Figure 5.2.

• As parcels of gas fall onto the protostar they add an extra layer of material
with both mass and entropy

• As the gas falls onto the star the energy density of ≥ ≠GMıfl/R is ther-
malised at the shock and the entropy of this gas is just proportional to
≥ ≠GMı/Rı
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Figure 5.2 : Mass-radius relation. The three curves have di�erent initial values of Rı

for a starting mass of 0.1M§
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• if initially Rı is large, the entropy of the gas added to the protostar is low
and the protostar shrinks under gravity

• The converse is true if Rı is initially small

• The protostar is characterised by its entropy profile S(r)

• The results show that Mı/Rı is an increasing function in the early stages
which gives an increasing entropy distribution with radius.

5.4.2 Onset of deuterium burning and convection

Convective stability

Consider a fluid element which moves a small distance through the atmosphere
�r so that it remains in pressure balanced with the surrounding gas :

• The element expands adiabatically to a lower density

• For stability, the density of this element must be greater than the density of
the surrounding gas

• If the entropy is increasing with radius the element is of lower entropy than
the surrounding

• for an ideal gas :
S = cv log(p/fl“) (5.20)

where “ = cp

cv
is the specific heat ratio of a gas.

hence fl increases as the entropy decreases. The atmosphere is convectively
stable therefore if :

ˆs

ˆr
> 0 (5.21)

Deuterium burning

At a temperature of about 106 K the first nuclear fuel to ignite is deuterium :

2H + 1H æ 3He + “ (5.22)

which releases 5.5 MeV. The heating rate due to this process is very dependent on
temperature with ‘D Ã T 11.8 ! The protostar is unable to e�ectively transport the
large luminosity produced in the core via radiative transport, the core heats up,
reversing the entropy gradient and the protostar becomes convective.
We can calculate the maximum energy flux which can be carried by a pure radiative
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flux. This occurs when the entropy is constant. From the equations of protostellar
structure :

Lcrit = 4fir2 4acT 3

3flŸ

3
ˆT

ˆr

4

s
= ≠GM16fiacT 3

3flŸ

3
ˆT

ˆp

4

s
(5.23)

• Although the amount of deuterium is small, convection helps to bring new
fuel to the core from the accreting gas

• This deuterium burning phase acts as a thermostat - the deuterium thermo-

stat

• Any rise in Mı/Rı increases the stellar entropy which, via convection, in-
creases Tc ; this leads to a substantial increase in ‘D which inflates the star,
reducing Mı/Rı.

5.4.3 Deuterium shell burning
As the protostar mass continues to grow via accretion the energy production from
the deuterium burning remains approximately constant determined by the rate of
supply of new fuel from the accreting gas.

• Lcrit however rises

• we can show that Lcrit scales as M11.2
ı R≠1/2

ı ; eventually Lcrit = LD and
radiative energy transport can again remove energy from the core. The
results of more detailed calculations are shown on Figure 5.3

• Without convection new deuterium accreted onto the protostar accumulates
in a shell

• E�ectively the radiative transport acts as a barrier preventing deuterium
reaching the core

• deuterium in the core is quickly depleted

• Eventually the temperature of this shell reaches 106K and the shell ignites

• The hot outer shell leads to a substantial increase in the stellar radius (Figure
5.4)

5.4.4 Contraction and hydrogen burning
The final stage of protostellar evolution we shall follow is the contraction of the
star. Without deuterium burning in the core, the self-gravity of the protostar drives
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Figure 5.3 : End of the convection phase for di�erent stellar masses. The black arrow
shows the radiative barrier
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Figure 5.4 : Radius mass relation accreting at 1 ◊ 10≠5M§yr≠1. The circles mark the
onset of full convection, the appearance of the radiative barrier and the onset of hydrogen
burning.
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the gravitational contraction of the star. The rate at which the star contracts is
determined by the rate at which the star loses internal energy due to radiation.
This is the Kelvin-Helmholtz timescale:

tKH = GM2
ı

RıLı
= 3 ◊ 107

3
Mı

M§

42 3
Rı

R§

4≠1 3
Lı

L§

4≠1
yr (5.24)

As the contraction proceeds the core temperature continues to rise until eventually
107K, hydrogen burning commences and halts the contraction. Further temper-
ature rise enables the CNO cycle. At this stage the protostar is regarded as a
pre-main-sequence star.
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6.1. PROPERTIES OF GALAXIES 766. Galaxies and star-formation on galactic
scales

Equipped with his five senses, man
explores the universe around him
and calls the adventure Science

— Edwin Hubble

In this chapter, we will review the properties of galaxies in the local Universe, and
will discuss the star-formation on galactic scales.

6.1 Properties of Galaxies in the Local Universe
In this section, we will build on the material type you met in relativistic astro-
physics and cosmology course.

6.1.1 The Galaxy Zoo
By observing the galaxies in the 1920’s, Edwin Hubble identified several morphol-
ogy: elliptical, spiral, barred spiral and irregular (Figure 6.1). In the following, we
will briefly give the properties of each type of galaxies.

Ellipticals - or early type galaxies

The elliptical galaxies are classified following the ratio between their major (a)
and minor (b) axis, and named as En, with n defined as :

n = 10a ≠ b

a
(6.1)

They are gas poor galaxies, with no (or little) star formation. Their stellar popu-
lation is generally dominated by old stars, and their stellar mass is ranging from
1011M§ to 1013M§. However, dwarf elliptical galaxies have masses of a few 1010M§
or less.
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Figure 6.1 : The Hubble sequence with the di�erent types of galaxies : elliptical, spiral,
barred spiral and irregular. From Cui et al. (2014)

The surface brightness of an elliptical galaxy is given by :

I(R) = Io exp
C

≠
3

R

a

41/4D

(6.2)

Spirals - or late type galaxies

A spiral galaxy is composed of a bright bulge and a disk. They could be either
spiral with no bar (named S) or barred spiral (named SB). From Sa to Sc (or SBa
to SBc), the openness of arms increases, the prominence of the bulge decreases
and the gas content increases. They are more gas rich than ellipticals with at
least some star-formation on-going. The gas is both low density neutral hydrogen
and dense molecular hydrogen. The fractional mass of neutral hydrogen gas to
total (i.e. M(HI)/M) is less than 0.03 for a Sa and goes up to 0.1 for Sc. In the
description of a spiral galaxy, we can also include the presence of rings identified
with "r" after the name of the spiral (Figure 6.2) and the luminosity of the arms
("I" for well defined arms to "V" to less luminous fuzzy arms ; Figure 6.3).

Firstly we describe the structure of spiral (or barred spiral) galaxy in terms of a
near spherical bulge which has similar properties to an elliptical, plus a disc. The
simplest description of the system requires a two dimensional model. A spiral seen
face-on has a surface brightness profile which follows an exponential distribution
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Figure 6.2 : Color image of the galaxy NGC 6782 classified as SB0(r)I. Source : NASA

Figure 6.3 : Color image of the galaxy M83 classified as SBc(s)II. Source : NASA
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Figure 6.4 : Color image of the galaxy M31 as seen by the Hubble Space Telescope
at optical wavelength(top left), by the Herschel telescope in infrared (top right), by the
Chandra telescope in X-ray (bottom right). Source : ESA

such as :
I(R) = Io exp(≠R

a
) (6.3)

The vertical structure in the disk also follows an exponential distribution with a
scale height1 we will call h. This implies an overall mass distribution in the disc
of:

fl(R, z) = fl0 exp(≠R/a) exp(≠|z|/h) (6.4)

The most obvious feature of spiral galaxies, their spiral arms, are a complicated
dynamical feature which we will return to later in the course. Here we note that
the spiral arms are delineated in many di�erent ways : they are seen in the stellar
distribution, atomic and molecular gas, young stars, magnetic fields, etc... (Figure
6.4)

6.1.2 The galaxy Luminosity Function
By definition, the galaxy Luminosity Function is the distribution in luminosity (L)
of the number density of galaxies („(L)) at a given redshift. Its form has been

1
bu definition, the scale height is a measure of the decrease of something that falls o� expo-

nentially by height, specifically, the height over which it falls by a factor of e (≥2.718)
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Figure 6.5 : UV Luminosity Function estimated at z ≥8 (black line) compared to the
UV Luminosity Function at z ≥6 (green dashed line). The three parameters of the LF are
also indicated. Adapted from Schmidt et al. (2014)

described empirically by Schechter (1976) :

�(L/Lı)d(L/Lı) = �ı(L/Lı)– exp(≠(L/Lı))d((L/Lı) (6.5)

that we can re-write as :
�(x)dx = �ıx–e≠xdx (6.6)

where �ı and Lı are the density and luminosity where there is a change in the
shape of the function (from exponential to linear), and – is the slope at the faint-
end of the Luminosity Function.

To determine the number density of galaxies, �(L) we need a redshift survey com-
plete to Llim at a given redshift z. The number of galaxies per given luminosity
is not similar to �(L) because of the Malmquist bias which is an e�ect in obser-
vational astronomy which leads to the preferential detection of intrinsically bright
objects. In statistics, this bias is referred to as a selection bias or data censoring.
It a�ects the results in a brightness-limited survey, where stars below a certain
apparent brightness cannot be included. Since observed stars and galaxies appear
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dimmer when farther away, the brightness that is measured will fall o� with dis-
tance until their brightness falls below the observational threshold. Objects which
are more luminous, or intrinsically brighter, can be observed at a greater distance,
creating a false trend of increasing intrinsic brightness, and other related quan-
tities, with distance. This e�ect has led to many spurious claims in the field of
astronomy. Properly correcting for these e�ects has become an area of great focus.

To test the integrity of a survey regardless of the luminosity bias, we can use the
volume-luminosity test (also called the V/Vmax method) develop by Schmidt et
al. (1968). The < V/Vmax > method tests whether the distribution of objects
is uniform within the volume of space defined by the observational selection cri-
teria. Among other advantages, it is suitable for samples containing few objects
and allows to combine samples of sources obtained with di�erent selection criteria.
Historically, it has been employed to study the space distribution of quasars and
to assess the cosmic evolution of their population. For a uniform population of
sources with measured fluxes S, V/Vmax are the ratios of the volume V within
which each source is distributed to the maximum volume Vmax within which each
source could still be detected (which is individually defined by the sample selec-
tion flux limit). In an Euclidean space V/Vmax should be uniformly distributed
between 0 and 1 with an average value < V/Vmax > =0.5.

Currently the most accurate determination of the UV Luminosity Function of
galaxies from z ≥4 to 10 has been done by Bouwens et al. (2021) using data from
the deepest surveys obtained with the Hubble Space Telescope (Hubble Ultra Deep
Field, CANDELS, Frontier Fields, etc... - Figure 6.6)

6.1.3 Stellar population
Stars are mainly characterised by their luminosity (or mass) and surface tem-
perature. They are classified according to their spectral type (O, B, A, F, G,
K, M) which is an ordering in terms of decreasing surface temperature. A dia-
gram showing the luminosity of a star as a function of the temperature is called
a Hertzsprung-Russel (HR) diagram (Figure 6.7). Most of the stars occupy the
region in the diagram along the line called the main sequence. During the stage of
their lives in which stars are found on the main sequence line, they are fusing hy-
drogen in their cores. The next concentration of stars is on the horizontal branch
(helium fusion in the core and hydrogen burning in a shell surrounding the core).
Another prominent feature is the Hertzsprung gap located in the region between
A5 and G0 spectral type and between +1 and -3 absolute magnitudes (i.e. between
the top of the main sequence and the giants in the horizontal branch). RR Lyrae
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Figure 6.6 : Evolution of the UV Luminosity Function obtained from the analysis of the
deepest HST surveys from z ≥2 to z ≥ 10. A clear decrease in number density if observed
from z ≥2 to z ≥10, suggesting a strong decrease in the number of galaxies. We can also
see a clear evolution of the characteristic luminosity towards the bright luminosities from
z ≥10 to z ≥2 suggesting an increase of the number of bright galaxies with cosmic time.
Source : Bouwens et al. (2021)
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variable stars can be found in the left of this gap on a section of the diagram called
the instability strip. Cepheid variables also fall on the instability strip, at higher
luminosities.

The H-R diagram can be used to roughly measure how far away a star cluster or
galaxy is from Earth. This can be done by comparing the apparent magnitudes of
the stars in the cluster to the absolute magnitudes of stars with known distances (or
of model stars). The observed group is then shifted in the vertical direction, until
the two main sequences overlap. The di�erence in magnitude that was bridged
in order to match the two groups is called the distance modulus and is a direct
measure for the distance (ignoring extinction). This technique is known as main
sequence fitting and is a type of spectroscopic parallax.
Stellar luminosity scales approximately as :

L Ã M– (6.10)

with – ≥3 for stars with mass below 0.5M§ and – ≥4 for higher masses.
We can also estimate the time a star can remain on the Main Sequence, since the
amount of hydrogen is scaled to the stellar mass :

·ms Ã M

L
Ã M1≠– (6.11)

After this time, stars will evolve o� of the main sequence and detailed calculations
exist for how this evolution occurs. By applying the previous equation to the most
massive stars, it is clear that their lifetime is shorter compared to solar-like stars.
Therefore the most massive stars (typically O and B stars) are excellent tracer of
recent star-formation. As a consequence of this, UV radiation is generally a good
tracer of recent star-formation.

The number of newly formed stars with masses in the range M æ M +dM is given
by the Initial Mass Function(IMF), which is commonly taken to have a power-law
form (also called Salpeter IMF) :

dN

dM
Ã M ◊ (6.12)

where for a standard Salpeter IMF : ◊ = ≠2.35
Note that as a consequence of the IMF steeply declining with mass, the bulk of
the mass budget is in low mass stars. On the contrary, despite being much less
numerous, high mass stars dominate the luminosity, as a consequence of the steep
stellar luminosity dependence on the stellar mass.
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The Cepheids to probe the distance of nearby galaxies

Cepheids are the first rung in the extragalactic distance ladder and hold
a special place in the subject because they were used by Edwin Hubble in
his first radial velocity vs. distance plot that led to the discovery of the
expanding Universe. Cepheids are a class of variable stars located in the
upper H-R diagram (see Figure 6.7); they are evolved, core helium-burning
stars whose progenitors are thought to have been B- or late O-type main
sequence stars. Their visual magnitudes vary in a regular fashion with
amplitudes of between a few tenths of magnitude and ≥2 magnitudes, with
periods ranging from a few days to a few weeks. The key role that Cepheids
have played in the determination of the extragalactic distance scale stems
from the existence of a tight period-luminosity relation: the longer the
period of their variability, the brighter their absolute magnitude. Cepheids
are supergiant stars with R ≥ 50R§ and L Ø 103L§ , bright enough to
be seen over intergalactic distances. Thus by measuring the period of an
extragalactic Cepheid star, it is possible to deduce its distance modulus by
comparing its observed magnitude with the absolute magnitude, provided
the period-luminosity relationship has been calibrated with the known
distances of nearby Cepheids in the Milky Way. A later refinement of
the calibration includes a colour term, giving the period-luminosity-colour
(PLC) relation:

MV = – log P + —(B ≠ V )0 + “ (6.7)

where –, — and “ are constants, P the variability period, (B ≠ V )0 the
intrinsic B ≠ V colour obtained after correcting for variable extinction
Then, including the relation between absolute magnitude and distance :

m ≠ M = 5 log dpc ≠ 5 (6.8)

where m is the observed magnitude and dpc is the distance in parsec,
therefore

dpc = 100.2(—[(B≠V )0+ m
— ]≠– log P +“Õ) (6.9)
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Figure 6.7 : The HR diagram. The position of a star in this diagram gives its nature
(giant, dwarfs, etc...). The main sequence is the line on which are most of the stars during
their lifetime. Source : NSO
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Figure 6.8 : Di�erent Initial Mass function, including the standard Salpeter IMF (in
dashed blue line). From Rybizki et al. (2017)
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6.2 Cloud fragmentation
In the previous chapters, we studied the stability of clouds, but we skipped over
an important problem. We saw that the Jeans mass in the ISM was of order the
mass of a star. This clearly implies that any more massive cloud also exceeds the
Jeans mass and is therefore unstable. Why do we not produce therefore a few very
massive collapsed objects (stars ?) from the collapse of a giant molecular cloud ?
What we see observationally is that giant molecular clouds are composed of many
small dense clouds.

Therefore the scenario that must occurs is the fragmentation of a single massive
cloud as it starts to collapse. The current model considers perfectly spherical col-
lapse, anything breaking this symmetry will greatly complicate the physics. To
get some insight into how a large cloud might collapse, we return to our analysis
of the free-fall timescale.

For a cloud which greatly exceeds its Jeans Mass, it is clear that the gravitational
energy is much larger than the thermal energy, and therefore the pressure-free
collapse model we used to derive the free-fall time is - at least initially - a reasonable
model. Consider again an initially homogeneous spherical cloud of gas of density
fl0, radius R, and mass M0 with no internal pressure throughout the collapse. Gas
molecules initially at a radius r0 will have a mass of gas Mr within the radius, and
during the collapse this mass remains constant. Therefore the equation of motion
for these molecules is :

ˆ2r

ˆt2 = ≠GMr

r2 (6.13)

Multiplying by ṙ = dr
dt and integrating with respect to time gives :

1
2 ṙ2 =

5
GM

r

6r

r0
= GM

r0

3
r0
r

≠ 1
4

= 4fi

3 r2
0fl0G

3
r0
r

≠ 1
4

(6.14)

hence
dr

dt
= ≠

Û
8fiGflr2

0
3

3
r0
r

≠ 1
41/2

(6.15)

where the negative sign is chosen to indicate the collapse. This is what we had
previously.

Now let’s follow this solution by introducing the dimensionless length › = r/r0
and the characteristic time t0 =


3/8fiGfl0, and introducing · = t/t0. Then :

d›

d·
= ≠

31
›

≠ 1
41/2

(6.16)
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we make the substitution › = cos2–, then

d–

d·
= 1

2cos2–
(6.17)

separating variables and integrating gives :

– + 1
2sin2– = · (6.18)

Several conclusions arise from the previous equations :

• The end of collapse occurs when › = 0, i.e. when – = fi/2 giving :

tff = fi

2 t0 =
3 3fi

32Gfl0

41/2
(6.19)

• The mass within each collapsing shell is conserved, and since the density is
initially uniform, it must remain uniform (because tff does not depend on
r0) and scales such as r3

0fl0 = r3fl(t) (constant mass within r(t)) or :

fl(t)
fl0

= r3
0

r3 = 1
cos6–

(6.20)

• For a time t close to collapse, we have :

· = t

t0
= tff ≠ (tff ≠ t)

t0
= fi

2 ≠ ‘ At this time r ≥ 0 æ – = fi

2 ≠ —

(6.21)
Inserting this into eq.6.18 gives, on expanding the "sin" :

—3 = 3‘

2 (6.22)

• Then the density close to collapse must be :

fl(t)
fl0

= 1
cos6(fi/2 ≠ —) = 1

sin6—
¥

3 2
3‘

42
=

A
2t0

3(tff ≠ t)

B2
(6.23)

Note that fl(t)/fl0 depends only on tff , i.e. only on fl0, and not on the initial
radius r0.

Now consider that towards the center of the initial sphere the density was per-
turbed to have a slightly higher density - an overdensity flÕ = fl0 + ”0. This
overdensity will have a slightly shorter free-fall time given by :

tÕ
ff ¥ tff

3
1 ≠ ”0

2fl0

4
(6.24)
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Towards the end of the collapse, this will have grown relative to the mean density
of the cloud to :

fl(t)Õ

fl(t) ¥
A

tff ≠ t

tÕ
ff ≠ t

B2
(6.25)

¥ 1 + ”0tff

fl0(tff ≠ t) (6.26)

Therefore the overdensity grows as :

”(t)
fl(t) ¥ ”0tff

fl(tff ≠ t) (6.27)

This implies that all overdensities (perturbations) grow on the same timescale (i.e.
about simultaneous fragmentation). This is di�erent to what we might expect
from the Jeans analysis. In the latter, the growth of instabilities of a given mass
was exponential and the timescale for growth depended on the wavenumber and
hence the mass. Moreover the growth time depended on the wavelength with the
largest modes growing fastest.

As a conclusion, we have demonstrated that a small inhomogeneity in the pressure-
free case will grow algebraically with time and that all perturbations grow at the
same rate. Qualitatively :

• A cloud which is initially very large compared to the Jeans mass will start
to undergo approximately pressure-free collapse.

• Many factors will break the symmetry we have considered in our ideal models
such as : the initial shape of the cloud, large-scale rotation, small scale
velocity variations - turbulence

• Any initial inhomogeneities will grow with time and they all grow on similar
timescales

• Eventually we expect the densest of these to become self-gravitating in their
own right.

How do we form the Initial Mass Function of stellar masses ?

This is very still uncertain. What we do know observationally is that there is
good correspondence between the cloud-mass spectrum and the shape of the IMF.
However how does this mass spectrum come about ? Input physics almost certainty
includes :
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• Turbulence - energy input drives random motions in the gas giving rise to
a turbulent cascade. The standard result is that the spectrum of energy in
turbulent motion satisfies:

E(k)dk Ã k≠5/3dk (6.28)

• The most successful models invoke scale-free, or fractal, structures within
the cloud

• Competitive accretion - for example the denser cores grow by faster than the
less dense cores by competing more strongly for the low density gas.

To make further progress requires numerical simulation (Figure 6.10).
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6.3 Galactic-wide star formation
In this section, we consider what factors controls star-formation on a galactic scale.
Our main goal is to determine the star-formation rate (SFR) for the galaxy (mass
of stars formed per unit time). Before going any further, we need to define the
following quantities :

• Â : SFR per unit volume (or possible mass) of the galaxy

• � : SFR for the whole galaxy

• �SF R : SFR per unit projected area of a galaxy (a useful observational
definition)

We first start by considering observational results. We certainly expect the star
formation rate to depend on the amount of available fuel. This is characterised
observationally by assuming what is called the Schmidt law with :

�SF R Ã ‡n (6.29)

where ‡ is the surface gas density. For a constant disc thickness this can be written
as :

Â Ã fln (6.30)

The best observational results give rise to what we call the Schmidt-Kennicutt law

(see also Figure 6.11):

�SF R

M§yr≠1kpc≠2 = 2.5 ◊ 10≠4
3

‡

M§pc≠2

41.4
(6.31)

This result is for the averaged properties of galaxies.

We can now consider some possible simple models for the star formation rate. In
all cases, we need to assemble clouds which exceed a Jeans mass and then allow
them to collapse.

Collisional assembly

Here we assume that the ISM consists of a large number of small clouds, each less
massive than the Jeans mass. Larger clouds are constructed by collisions between
the clouds. In this simple case, the collision rate will be of order n2 ◊ v ◊ A, where
n is the number density of clouds, A their cross section and v the RMS mean
(random) velocity in the disc. Also, we assume the collision time is long compared
to the free-fall time of the clouds once they exceed their Jeans mass. This suggests
that Â Ã fl2 which is not in agreement with the Schmidt-Kennicutt law.
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Figure 6.11 : Composite star-formation law for the normal disk (filled circles) and
starburst (squares) samples. Open circles show the SFRs and gas densities for the centres
of the normal disk galaxies. The line is a least-squares fit with N=1.4. Source : Kennicutt
(1998)
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Collapse-time limited

An even simpler model is to assume we have large clouds already in place, which
exceeds the Jeans mass by a large factor. These will collapse and fragment on a
free-fall time as we discussed previously. The SFR will then be determined by the
amount of gas which can form stars, which will just be proportional to the density
divided by the collapse time scale, such as :

Â Ã fl

tff
(6.32)

but tff = (3fi/32Gfl)1/2 therefore we get :

Â Ã fl3/2 (6.33)

which is close to the Schmidt-Kennicutt law.
However, recent studies have demonstrated that this model is certainly too sim-
plistic and additional e�ects have to be taken into account.

From the observational point of view, it has been shown that the bulk of the
Schmidt-Kennicutt relation is driven by the molecular component of the gas : if
the gas surface density is divided into atomic and molecular components, then
it becomes observationally clear that the star formation rate (or �SF R) does not
depend on �HI while it depends strongly on �H2. This clearly indicates that
star-formation is associated with the molecular phase of the gas (where cooling
and, therefore, fragmentation, can occur more e�ciently). Furthermore, if one
considers only the dense component of the molecular gas (i.e. gas with density of
about 106cm≠3 or higher), then the relation with the SFR becomes tighter and
linear. Therefore, observations suggest that there is a 1:1 relation between the star
formation rate and the mass of the dense component of the molecular gas. The
super-linear relation with the total H2 mass is probably a consequence of the fact
that in low density environments, there is an additional di�use component of the
molecular gas that does not participate to the star formation process.

6.4 Simple models of gas and star formation evolution
in galaxies

In the following section, we will develop a very simple model of gas in a galaxy to
trace the evolution of the star-formation rate. We first need to make the following
assumptions :

• The initial total gas mass is M0
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• The mass in the gas is a function of time : g(t)

• The mass in stars is given by : s(t)

• The star formation rate is given by �(t)

Gas is returned from the stars to the ISM via supernovae. We make the approxi-
mation that this is an instantaneous process and that the fraction of mass locked
up in old stars is –. Gas is therefore returned to the ISM from supernovae at a
rate : (1-–)�. This phenomena is called feedback and we will discuss it later.

6.4.1 Closed-box model of star formation in a galaxy
For this model, we assume that there is no gas inflow or outflow, i.e. the galaxy
evolves as a "closed box". The mass of gas therefore evolves as follows :

dg

dt
= ≠� + (1 ≠ –)� = ≠–� (6.34)

For simplicity, we can assume a linear relation :

�(t) = ‘g(t) (6.35)

where ‘ can be seen as the star formation e�ciency, i.e. the mass of stars formed
per unit gas mass. We therefore get for the evolution of the mass of gas :

dg

dt
= ≠–‘g (6.36)

integrating :
ln(g(t)) ≠ ln(M0) = ≠–‘t (6.37)

hence :
g(t) = M0e≠–‘t (6.38)

Therefore for a galaxy evolving like a closed box, the gas mass decreases exponen-
tially with time.
For the stellar mass :

s(t) = M0 ≠ g(t) = M0(1 ≠ e≠–‘t) (6.39)

6.4.2 The e�ect of inflows and the gas regulator (or "bathtub")
model

If we want to develop a more realistic model, we need to assume that galaxies are
not evolving as closed boxes : inflows and outflows of gas characterize the life of
most galaxies.
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Figure 6.12 : Accreting gas (inflowing gas) in two nearby galaxies. Images on the
left from the Sloan Digital Sky Survey of the nearby galaxies NGC 4013 (top) and M63
(bottom) show regular disks while the much deeper images on the right reveal streams of
stars accreted from smaller galaxies. From Carlin et al. (2016)

We first focus on gas inflows. The presence of gas inflows was first inferred directly
from the analysis of the stellar metallicities in our Galaxy (we will look at this later
on). Direct evidence for accreting gas onto the Milky Way was then found through
the detection of high velocity gas clouds in the halo of the Milky Way, detected
trough HI 21cm observations. Direct evidence for gas accretion has been observed
also in other local galaxies (Figure 6.12). According to galaxy evolutionary models,
gas inflows are even more prominent and important in high-redshift galaxies.
Suppose now, a galaxy subject to a constant gas inflow rate �. Then the evolution
of the gas mass becomes :

dg

dt
= ≠–� + � (6.40)

One may naively expect that a very large inflow rate � may produce a galaxy
extremely rich in gas, with a total mass completely dominated by the gas mass.
However, for the bulk of the galaxies that is not the case. This is because the star
formation rate � is linked to the total gas mass through the Schmidt-Kennicutt
relation, and it acts as a "valve" that regulates the total amount of gas in the
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galaxy, by transforming the excess inflowing gas into stars. More specifically :
dg

dt
= ≠–‘g + � (6.41)

As the inflow deposit gas onto the galaxy, the gas mass g increases until the point
where the right hand term of eq.6.41 becomes 0. At this point the gas content
of the galaxy is in equilibrium, i.e. any inflowing gas is transformed into stars.
Therefore equilibrium occurs when the gas mass in the galaxy is :

g = �
–‘

(6.42)

This scenario is often dubbed "bathtub" model, where the gas inflow can be seen as
water flowing from the tab, the gas mass can be seen as the water in the bathtub,
while the star formation rate is the water flowing out of the drain. The rate at
which water flows out of the drain is proportional to the water pressure, hence
proportional to the amount of water in the bathtub. The amount of water in the
bathtub reaches a level where its pressure onto the drain makes the rate of outflow-
ing water equal to the rate of inflowing water. If the rate of inflowing water from
the tap is increased or decreased, the level of water in the bathtub increases or de-
creases to reach a new equilibrium point, where the associated pressure makes the
outflow rate again in equilibrium with the inflow rate. Conceptually, the amount
of gas in a galaxy works in a similar way, where the water pressure is replaced by
the Schmidt-Kennicutt law.

It is often useful to define the gas fraction, which is the mass of the gas relative
to the total baryonic content (i.e. gas and stars), which is often an indicator of
evolutionary stage of a systems :

fgas = M(gas)
M(baryons) = M(gas)

M(gas) + M(star) = g

g + s
(6.43)

We have seen that for a constant inflow rate, at equilibrium, the gas mass is
constant, and given by eq.6.42. However, the stellar mass keeps growing and it is
given by :

s = �t ≠ g (6.44)
N.B.: This is true only when the galaxy has reached equilibrium.
Therefore, the gas fraction steadily decreases with time, hence making galaxies
"gas poor" as :

fgas = 1
–‘t

(6.45)

Once more, this is correct only after the equilibrium has been reached and neglect-
ing the stellar mass produced before reaching equilibrium, i.e. when t >> 1/–‘.
This implies that the gas fraction is independent of the inflow rate.
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Figure 6.13 : Evolution of the gas fraction as a function of the stellar mass observed in
local galaxies. From Peng et al. (2015)

Note that the gas fraction is also indirectly related to the stellar mass. Indeed also
the stellar mass depends on time, according to equation 6.44. The gas fraction can
also be expressed as :

fgas(t) = � + 1
–‘s(t) (6.46)

which highlights the (indirect) relation between stellar mass and gas fraction. In
particular, it is expected that the gas fraction should decrease with stellar mass,
which is indeed observed in local galaxies, as shown in Figure 6.13
Note that these equations are also highlighting that the gas fraction is a good
tracer of the galaxy evolutionary stage, i.e. galaxies with low gas fraction are
typically more evolved than galaxies with high gas fraction.

6.4.3 The e�ect of outflows
There is a clear observational evidence that prominent outflows eject large mass of
gas out of galaxies. This will be seen in more detail in the next lectures, especially
when introducing the concept of "feedback". Here we only mention that one of the
primary mechanisms responsible for driving outflows is associated to supernova
explosions. Radiation pressure (on dust) from the light emitted by young, luminous
stars is another possible mechanism. Since both the supernova rate and radiation
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from young stars are proportional to the star formation rate, the outflow rate � is
often conveniently expressed as proportional to the star formation rate :

� = ⁄� (6.47)

where ⁄ is often called the "outflow loading factor" (observational constraints gen-
erally give ⁄ ≥1 for actively star forming galaxies).
By introducing the e�ect of outflows, the variation of gas with time becomes :

dg

dt
= ≠–� + � ≠ ⁄� (6.48)

or, by replacing the linear Schmidt-Kennicutt relation :

dg

dt
= ≠–‘g + � ≠ ⁄‘g (6.49)

which gives an equilibrium gas mass (right hand term to zero) :

g = �
(– + ⁄)‘ (6.50)

So the e�ect of outflows is similar to that of varying the value of the constant
–. The stellar mass at equilibrium (neglecting the stellar mass formed before
reaching equilibrium) is given by s ¥ –�t = –‘gt. Therefore, at equilibrium, the
gas fraction is still given by :

fgas ¥ 1
–‘t + 1 ¥ 1

–‘t
(6.51)

The gas outflows seems not to have an e�ect in explaining the lower gas fraction
in massive galaxies. However, as we shall see later on, in massive galaxies Active
Galactic Nuclei (i.e. supermassive accreting black holes) can greatly contribute
to enhance the outflow rate, hence e�ectively increasing the value of ⁄, even by a
factor of several, in massive galaxies, hence contributing to greatly reduce the gas
content in massive galaxies.

6.5 Metallicity evolution of galaxies
With the term "metals" astronomers refer to all elements heavier than helium. The
mass fraction of heavy elements, also called the metallicity, is indicated with Z
and defined by :

Z = Mmetals

Mtot
¥ Mmetals

MH
(6.52)
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It is generally important to di�erentiate between stellar metallicity (mass fraction
of metals in the stellar atmospheres) and gas metallicity (mass fraction of metals
in the interstellar medium). The solar metallicity is Z§=0.014
Except for some lithium and beryllium, metals are produced by stellar (and ex-
plosive) nucleosynthesis and released into the Inter Stellar Medium (ISM) at the
end of the stellar lifetime trough supernova explosion and stellar winds. The met-
als injected into the ISM are then used by the formation of the next generation of
stars. Di�erent supernovae (hence stars with di�erent masses) enrich the ISM with
di�erent elements. Stars with mass larger than 8M§ leave the Main Sequence in
less than about 30 Myr and finish their life as type II (core-collapse) supernovae,
which enrich the ISM mostly with –-elements2 (O, Ne, Mg, Si, S, Ca, ...). Stars
with mass less than 8M§ take much longer to leave the Main Sequence (e.g. 1
Gyr or longer, depending on their mass). These stars evolve as Asymptotic Giant
Branch stars (AGBs) and then Planetary Nebulae, which enrich the ISM mostly
with carbon and nitrogen, and then can yield type Ia Supernovae, which inject
into the ISM mostly Fe-peak elements.

Modelling the metallicity evolution of galaxies is a very complex field of astro-
physics. Multiple e�ects have to be taken into account (e.g. production of di�erent
elements on di�erent timescales, e�ects of gas inflows diluting the gas metallicity,
e�ect of gas outflows ejecting metals out of the galaxy, variation of the star for-
mation e�ciency). The reward is that the comparison between the metallicity
predicted by models and observations can provide tight constraints on the galaxy
evolutionary scenarios.

It is beyond the scope of this course to investigate in detail the galaxy metallicity
evolutionary models and scenarios. In the following, we will only focus on the
metallicity evolution in the case of a closed box system that, although relatively
simple, provide some interesting information on galaxy evolution.

Metallicity evolution in a closed box system

We recall the basic definitions and assumptions that we introduced for the closed
box model :

• The system is closed with no mass loss or gain :

– Total mass M0

– Mass in gas : g(t)
2
The – process, also known as the – ladder, is one of two classes of nuclear fusion reactions by

which stars convert helium into heavier elements, the other being the triple-alpha process. The
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– Mass in stars : s(t)
– Star Formation Rate : �(t)

• Gas is returned from stars to the ISM via supernovae at a rate (1-–)�

• We also follow the metallicity of the gas, i.e. the mass fraction of heavy
elements in the gas :

– The production of new metals per mass of stars is p

– The rate of mass of new metals returned to the ISM via supernovae is
therefore p(1 ≠ –)�

– The total mass of metals returned to the ISM via supernovae is (p +
Z)(1 ≠ –)�

We recall that the mass of gas in a closed box system evolves as follows :

dg

dt
= ≠� + (1 ≠ –)� = ≠–� (6.53)

The production of metals is given by :

d(gZ)
dt

= (p + Z)(1 ≠ –)� ≠ Z� = p(1 ≠ –)� ≠ –Z� (6.54)

Combining these two equations gives :

g
dZ

dt
= p(1 ≠ –)� = ≠p

1 ≠ –

–

dg

dt
= ≠P

dg

dt
(6.55)

where P is called the "yield" in this context. Note that this is a di�erential equation
relating the metallicity and gas mass and in this simple case does not depend on
the star formation rate which could have any form ; the previous equation can
therefore be rewritten as :

dZ = ≠P
dg

g
(6.56)

We can easily integrate this equation using the boundary conditions t = 0, Z = 0
; g = M0 and for a general time t we get :

Z(t) = ≠ P ln(g/M0) (6.57)
g(t) = M0 exp(≠Z/P ) and s(t) = M0 ≠ g(t) = M0(1 ≠ exp(≠Z/P ))

(6.58)

Models of stellar evolution suggest a value for the yield of about 0.5Z§ where Z§
is the solar metallicity.
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Stars formed at a time t < t1 must have a metallicity less than Z(t1) since they
formed out of gas which was less enriched in the past (keep in mind that the metal-
licity observed on the photospheres of Main Sequence stars reflect the metallicity
of the gas out of which these were formed since during the Main Sequence there
is no mixing between the stellar interior, where nucleosynthesis occurs, and the
photosphere). Therefore, for example, the fraction of stars with metallicities less
than 0.1 of the solar value (Z§) is given by :

s(< Z§/10)
M0

= 1 ≠ exp(≠Z§/10P ) ¥ 1 ≠ exp(≠1/5) ¥ 0.2 (6.59)

The problem is that this is much larger than the number of old low-metallicity
stars observed in the disc of our galaxy. This problem is commonly called G-

dwarfs problem. Our star is itself an old G-star with a relatively high metallicity.

There are of course many ways to improve the above model and solve this problem.
The most likely solution (broadly accepted), which also hints at our cosmological
models for galaxy evolution, as already discussed, is to allow for inflow and outflow
of gas. Gas inflows in particular are thought to be the key ingredient to explain the
G-dwarfs problem. Even if the inflowing gas has very low metallicity, the G-dwarf
problem can be solved because the additional gas can prolong the duration of star
formation (relative to the closed box system), hence there are more stars formed
at late times, when the gas has already been enriched with metals.

6.6 Stellar orbits and spiral structure
In the previous sections, we have seen that star-formation should occur in regions of
overdensities, i.e where it is more likely that gas clouds are compressed, perturbed
and collapse to form stars. Observationally we see that this happens in the spiral
arms of disk galaxies or at the edges of stellar bars. In the following we investigate
the dynamics behind the formation of spiral arms and bars, and the physical
conditions that lead to disk instabilities. We will first start by recalling the basic
properties of the rotation curves in spiral galaxies.

6.6.1 Rotation curves in galaxy disks
By using spectral lines, such as the neutral hydrogen (HI) at 21cm, or optical
nebular emission lines (e.g. H–), we can measure the rotation curve (the rotation
velocity as a function of radius) with accuracy. Disk rotation curves are character-
ized by a central region (a few kpc in radius at most) where the rotation velocity

triple-alpha process consumes only helium, and produces carbon.



6.6. STELLAR ORBITS AND SPIRAL STRUCTURE 104

Figure 6.14 : Color image of a spiral galaxy (M101). The star formation is traced by
the blue light, and occurs mainly in the arms. Source : STFC
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scales linearly with radius (v(r) Ã r, i.e. the angular velocity �r ≥ constant). We
can therefore estimate the mass within a radius r by applying Gauss’s theorem,
assuming a spherical mass distribution and circular orbits :

v2

r
= GM(r)

r2 (6.60)

For a velocity independent of radius, this implies M(r) Ã r which is clearly not
consistent with the density distribution of stars, which is inferred from the observed
stellar surface brightness, neither with the mass in gas. The conclusion is that there
must be more mass - dark matter - than suggested by the distribution of visible
matter (stars and baryonic gas). We note that M(r) Ã 1/r2, which is what we
expect in a simple model for a dark matter halo.

6.6.2 Stellar Orbits
To simplify the study, we consider a cylindrically symmetric model in which the
potential is given by �(r, z) and examine orbits initially in the z =0 plane. We
assume the following :

• The angular momentum per unit mass for each star is conserved :

l = r2„ = constant (6.61)

where „ is the azimuthal angle

• The energy per unit mass is also conserved, therefore :

E = 1
2 ṙ2 + 1

2(r„̇)2 + �(r) = 1
2 ṙ2 + l

2r2 + �(r) (6.62)

• The equation of motion in the radial direction is just :

r̈ ≠ r„̇2 = ≠ˆ�
ˆr

(6.63)

• It is useful to introduce the e�ective potential :

�e = � + l2

2r2 (6.64)

to rewrite the equation of motion :

r̈ = ≠ˆ�e

ˆr
(6.65)
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Figure 6.15 : Resonant spiral perturbation

By definition, circular orbits have r̈ = 0 and hence are given by :

ˆ�e

ˆr

2

r0
) = 0 = ˆ�

ˆr

2

r0
≠ l2

r3
0

(6.66)

where r0 is the radius of the circular orbit.

Given a �(r), or equivalently a mass distribution, we can calculate the properties
of the circular stellar orbit at any radius. In particular at a radius r the angular
velocity of the circular orbit is given by :

�(r)2 = l2

r4 = 1
r

ˆ�
ˆr

(6.67)

A star when perturbed will undergo small motions about this circular orbit. We
write x = r ≠ r0 and expand the e�ective potential about r0 :

�e(x) = �e(r0) + x
ˆ�e

ˆr

2

r0
+ 1

2x2 ˆ2�e

ˆr2

2

r0
+ O(x3) (6.68)

The term in x clearly is zero and the radial equation is just :

ẍ = ≠ˆ�e

ˆx
= ≠x

ˆ2�e

ˆr2

2

r0
(6.69)

which is the Simple Harmonic Motion (SHM) with a frequency called the epicyclic
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frequency given by :

Ÿ2 = ˆ2�e

ˆr2

2

r0
=

C
ˆ2�
ˆr2 + 3l2

r4

D

r0

(6.70)

=
C

r
ˆ�2

dr
+ 4�2

D

r0

(6.71)

= 4�2
5
1 + r

2�
ˆ�
ˆr

6

r0
(6.72)

Similarly, we can show that for small amplitude motion out of the plane of the
disc (z direction) the star undergoes SHM with :

v2 = ˆ2�e

ˆz2

-----
r=r0,z=0

(6.73)

6.6.3 Resonant orbits
In general spiral structure is complicated, but one important physical idea is the
concept of resonant orbits. Near circular orbits will be the superposition of the pure
circular orbit plus the radial motion. In the lab frame after one radial oscillation
of period Tr = 2fi/Ÿ the orbit will have precessed by :

�„ ¥ �Tr (6.74)

In general the orbit will not close in this frame, but consider the situation in a
frame rotating at �p - the pattern speed. In this frame :

�„p = �„ ≠ �pTr (6.75)

For the orbit to close after m radial oscillations, we require :

2nfi = �mTr ≠ �pmTr (6.76)

or
�p = � ≠ n

m
Ÿ (6.77)

Interestingly, in many systems the form of �(r) means that, for n = 1 and m = 2,
�p is approximately constant across the disk of the galaxy.

In this case, we can arrange the phase of the orbits so that adjacent stars in
certain regions of the disk have a higher density and put them on the n = 1,
m = 2, perturbed orbits - these will then be long lived. We can achieved this,
for example, if there is an external perturbation, which causes a rotating potential
which is resonant with these orbits. There is a lot more to spiral structure than
this simple analysis, but the idea of resonant orbit plays a central role.
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6.6.4 Stability of a rotating disc - spiral density waves
We now consider the stability of a rotating disc in more detail. One manifestation
of unstable discs are spiral density waves, but the following analysis will also
provide an insight into the overall stability of the disc and star formation.
We start again with Euler’s equations for an ideal fluid. We use a cylindrical
coordinate system. The radial equation is :

fl
ˆvr

ˆt
+ flvr

ˆvr

ˆr
+ fl

v◊

r

ˆvr

ˆ◊
≠ fl

r
v2

◊
¸ ˚˙ ˝

[fl(v·Ò)v]r

= fl
ˆ„g

ˆr
≠ ˆp

ˆr
(6.78)

where „g is the gravitational potential. The ◊ equation is :

fl
ˆv◊

ˆt
+ flvr

ˆv◊

ˆr
+ fl

v◊

r

ˆv◊

ˆ◊
≠ fl

r
v◊vr

¸ ˚˙ ˝
[fl(v·Ò)v]◊

= ≠fl
1
r

ˆ„g

ˆ◊
≠ 1

r

ˆp

ˆ◊
(6.79)

and the equation of continuity :

ˆfl

ˆt
+ 1

r

ˆ

ˆr
(flrvr) + 1

r

ˆ

ˆ◊
(flv◊) = 0 (6.80)

We are not interested here in the vertical structure in the disc and therefore we
project these equations into a 2D form by integrating the pressure in the z-direction
and assuming all of the mass is concentrated in a plane.
If we assume there is no dependence of the velocities on z then this integration
gives identical equations except that the density and pressure are replaced by:

fl(r, ◊, z, t) = ‡(r, ◊, z)”(z) ; P =
⁄

fl dz (6.81)

where ‡ is the disk surface density. To proceed, we will use a perturbation analysis.
The unperturbed solution is an axially symmetric rotating mass distribution, ‡0(r),
with v0=(0, r�(r)) and an unperturbed potential „g0 . To these we add on small
perturbations, which are all functions of r, ◊, and t :

v = (u, v + r�) (6.82)
‡ = ‡0(r) + ‡Õ(r, ◊, t) (6.83)

„g = „g0 + „Õ
g(r, ◊, z, t) (6.84)

where ‡0(r) and ‡Õ(r, ◊, t) satisfy :

Ò2„g0 = 4fiG‡0”(z) Ò2„Õ
g = 4fiG‡Õ(r, ◊, t)”(z) (6.85)
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P is a force per unit length and is of course the plane (2D) analogue of pressure.
We assume an isothermal-like equation of state and write :

P = a2
0‡ (6.86)

where a0 is essentially the velocity dispersion of the particles – stars – in the disk.
Keeping only terms to first order in small quantities, we obtain after some algebra:

Radial u
ˆu

ˆt
+ �ˆu

ˆ◊
≠ 2v� = ≠a2

0
‡0

ˆ‡Õ

ˆr
≠

ˆ„Õ
g

ˆr
(6.87)

Angular v
ˆv

ˆt
+ �ˆv

ˆ◊
+ Ÿ2u

2� = ≠ a2
0

r‡0

ˆ‡Õ

ˆ◊
≠ 1

r

ˆ„Õ
g

ˆ◊
(6.88)

Continuity ˆ‡Õ

ˆt
+ 1

r

ˆ

ˆr
(r‡0u) + ‡0

r

ˆv

ˆ◊
+ �ˆ‡Õ

ˆ◊
= 0 (6.89)

Ÿ is the epicyclic frequency we introduced earlier and comes into the equations
since:

u
ˆr�
ˆr

+ u� = 2�u
3

1 + r

2�
ˆ�
ˆr

4
= uŸ2

2� (6.90)

We now look for spiral-like solutions writing :

‡Õ = ‡̂ exp [i(Êt ≠ n◊ + �(r))] (6.91)

with similar expressions for u, v and „Õ
g. We make the further approximations that

‡̂ are approximately constant functions. The basic properties of solutions of this
form are :

• The maximum in the density occurs for Êt ≠ n◊ + �(r) = 0. To understand
the implications of this form consider t = 0, then the locus of the maximum
density has : n◊=�(r) which is a spiral patter which represents n-armed
spiral ; and the pattern makes an angle to the ◊ direction, the pitch angle,
tan – = n

r d�
dr

= n
kr where we define k as k = d�

dr

• The radial distance between maxima is given by :

�(r + ⁄) ≠ �(r) = 2fin (6.92)
For ⁄ << r : �(r + ⁄) ¥ �(r) + k⁄ and ⁄ ¥ 2fin/|k| (6.93)

• The spiral pattern represent advances in time as the pattern speed :

�p = ◊̇ = Ê/n (6.94)
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Substituting these spiral-like solutions into eq.6.80 and eq.6.81 leads to a straight-
forward algebraic equations. Solving Poisson’s equation is more di�cult. The
solution can be found in what is called the tight-winding approximation when
n/kr <<1 - this implies, among other things, that the main variation in the grav-
itational potential is radial and not in the angular direction.
We will quote the results of this analysis :

Ÿ2 ≠ n2(�p ≠ �)2 + k2a2
0 = 2fiG|k|‡0 (6.95)

or re-arranging :

n2(�p ≠ �)2 = (Ê ≠ n�)2 = Ÿ2 + k2a2
0 ≠ 2fiG|k|‡0 (6.96)

A special case is when the disc is not rotating. We can find the dispersion relation
for this special case by setting n� = 0 and Ÿ = 0 to give:

Ê2 = k2a2
0 ≠ 2fiG|k|‡0 (6.97)

This is the dispersion relation we discussed before identifying a0 as the isothermal
sound speed aT . Returning to the rotating disc, the limiting situation occurs when
n is zero (i.e. axisymmetric disc), then:

Ê2 = Ÿ2 + k2a2
0 ≠ 2fiG|k|‡0 (6.98)

the disc is stable to the spiral perturbations provided that Ê2 > 0. From the
previous equation it is clear that the rotation (Ÿ) and velocity dispersion (a0)
have both a stabilising e�ect, while gravity (i.e. the surface density ‡0) has a
destabilising e�ect:

Ê2

Ÿ2 = 1 + k2a2
0

Ÿ2 ≠ 2fiG|k|‡0
Ÿ2 (6.99)

or
Ê2

Ÿ2 = 1 + Q2

4
k2

k2
T

≠ |k|
kT

(6.100)

where Q is the disc stability parameter, defined as :

Q = 2kT a0
Ÿ

= Ÿa0
fiG‡0

(6.101)

kT is the Toomre wave number defined as :

kT = Ÿ2

2fiG‡0
(6.102)

From this expression, the division between stable and unstable solutions occurs
when Ê2 = 0 or :

|k|
kT

= 2
Q2

1
1 ± (1 + Q2)1/2

2
(6.103)
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This only has a solution for |k| when Q < 1. In this case there are regions where
Ê < 0, hence spiral perturbations grow exponentially, yielding the collapse of
clouds, likely resulting into star formation. When Q > 1 æ Ê2 > 0 ’|k| and the
disc is always stable. The latter condition can be expressed in terms of a minimum
velocity dispersion that makes the disk stable:

a0 Ø a0,min = fiG‡0
Ÿ

(6.104)

6.6.5 Lindblad Resonances
Returning to the full dispersion relation (eq.6.96) we can write :

k2a2
0 ≠ |k|

kT
Ÿ2 + (Ÿ2 ≠ n2(�p ≠ �)2) = 0 (6.105)

This is just a quadratic in |k| and, assuming the case a0 = a0,min it is easy to find
that to have real wave-like solutions (i.e. |k| real and positive) it is necessary that
:

1 ± n

Ÿ
(�p ≠ �) Ø 0 (6.106)

and hence :
� ≠ Ÿ

n
Æ �p Æ � + Ÿ

n
(6.107)

We only have spiral density wave solutions between the inner and outer Lindblad
resonances :

• �p = � ≠ Ÿ
n inner Lindblad resonance

• �p = � + Ÿ
n outer Lindblad resonance

• �p = � is called corotation

6.6.6 The threshold of the Schmidt-Kennicutt relation
The Schmidt-Kennicutt law (relation between the star formation rate surface den-
sity and the gas surface density) is know to have a threshold for star formation
: below a minimum gas surface density, star formation becomes very ine�cient
(�thr(gas) ≥5M§kpc≠2, but variable from galaxy to galaxy). This is illustrated in
Figure 6.16. This threshold is generally responsible for the fact that, despite the
gas distribution (HI) extending to large radii, star formation is confined within a
certain radius.
The Toomre stability parameter gives a simple explanation for this e�ect. Indeed,
in order to have a instability, i.e. star formation, it has to be Q < 1. Therefore,
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Figure 6.16 : (Left) Dependence of H– surface luminosity on the total gas surface
density - there is clear evidence for a threshold in the H– emission which is a tracer of
the star formation. (Right) Distribution of gas and critical surface density as a function
of the radius. The bottom panel shows the ratio of these two quantities and the arrow
indicates the edge of the region in which HII regions are found; There are no HII regions,
and hence no indication for star-formation, beyond the radius where the gas density falls
below a value very close to the critical value. From Kennicutt et al. (1989)

to have star formation the gas surface density has to exceed a critical value :

‡ > ‡c = Ÿa0
fiG

(6.108)

It is observed that this condition is indeed met in the central part of disk galaxies,
where star formation occurs.
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7.1. STELLAR WINDS 1147. Feedback processes in
star formation

We are bits of stellar matter that
got cold by accident, bits of a star
gone wrong.

— Sir Arthur Eddington

In the local Universe, only 4% of baryons have been converted into stars, while
theory of gas cooling and gravitational collapse would have expected that, over
the entire life of the Universe (≥13.7 Gyr) about 80% of the baryons should have
been converted into stars. Hence some mechanisms must have been responsible
for suppressing the formation of stars and/or removing gas from galaxies, hence
preventing it from star forming stars. Such mechanisms are globally identified
as negative feedback processes. We will see that these processes are partially as-
sociated with star formation itself and partially associated with accretion onto
supermassive black hole.

7.1 Stellar Winds

Mass loss from massive and evolved stars occurs in the form of stellar wind (the
solar wind is a nearby example).
The properties of the stellar wind depend on the star :

• Post-main sequence stars nearing the ends of their lives often eject large
quantities of mass in massive (Ṁ > 10≠3M§yr≠1) but relatively slow (v <10
km s≠1) winds. Post-main sequence stars include red giants and super giants,
and asymptotic giant branch stars. The winds are likely to be driven by
radiation pressure on dust condensing in the upper atmosphere of the stars.

• Massive O and B stars have stellar winds with lower mass loss rates (Ṁ <
10≠6M§yr≠1) but very high velocity (v > 1000 ≠ 2000kms≠1). Such winds
are driven by radiation pressure on the resonance absorption lines in heavy
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elements such as carbon and nitrogen. These high-energy stellar winds pro-
vide significant feedback and drive shocks into the ISM - they have a two-
shock structure. The freely-expanding stellar wind hits an inner termination
shock where it’s kinetic energy is thermalized, producing 106 K, X-Ray emit-
ting plasma. The hot, high-pressure, shocked wind expands, driving a shock
into the surrounding interstellar gas. If the surrounding stellar gas is dense
enough (number densities n >0.1 cm≠3 typically), the swept up gas radia-
tively cools far faster than the hot interior, forming a thin, relatively dense
shell around the hot, shocked wind.

Although stellar winds from main sequence stars do not strongly influence the
evolution of the stars, during the later, post-main sequence phase, mass lost by
stellar winds can decide the fate of the star. Many intermediate mass stars become
white dwarfs at the ends of their lives rather than exploding as supernovae only
because they lost enough mass in their winds. It can be shown that about 20% of
the energy of the stellar wind is converted into kinetic energy of the surrounding
ISM.

7.2 Additional feedback e�ect from O-B massive stars
Massive stars on the main sequence have additional feedback e�ects, as a conse-
quence of their high luminosity, which dominate the total luminosity of the newly
formed stars (as a consequence of L Ã M4) on the Main Sequence, and of their
high temperature, producing large amount of ionising photons. More specifically,
additional feedback e�ects of O-B stars :

• Photoionisation, and hence heating, of the ISM.

• Strong radiation pressure onto the dust in the ISM clouds can drive powerful
winds, which eject gas out of the galaxy.

7.3 Supernovae
Stellar winds are therefore e�cient at putting energy into the ISM, however they
represent a relatively minor feedback process in galaxies which are actively pro-
ducing very massive stars, i.e. those with masses greater than about 8M§ as these
end their lives as supernovae which have a very dramatic e�ect on the galaxy. The
total energy input to the ISM from each supernova explosion is of order 1043-1044J.
Moreover the supernovae feedback also processed stellar material and therefore are
responsible for the metallicity enrichment of the ISM as we have already discussed.
Typically one solar mass of material is ejected back into the ISM.
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Figure 7.1 : X-ray & Optical Images of SNR E0519-69.0 a supernova remnant in the
LMC. Here, multimillion degree gas is seen in X-rays from Chandra (blue). The outer
edge of the explosion (red) and stars in the field of view are seen in visible light from
Hubble. Source : NASA/CXC/Rutgers/J.Hughes (X-Ray) ; NASA/STScI (Optical)
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Figure 7.2 : Images of the starburst galaxy M82. Optical light from stars (yellow-
green/Hubble Space Telescope) shows the disk of a modest-sized, apparently normal
galaxy. The Spitzer Space Telescope infrared image (red) shows that cool gas and dust
are also being ejected. Chandra’s X-ray image (blue) reveals gas that has been heated to
millions of degrees by the violent outflow. The eruption can be traced back to the central
regions of the galaxy where stars are forming at a furious rate, some 10 times faster than
in the Milky Way Galaxy. Source : NASA

7.4 Starburst and ultraluminous galaxies
Starburst and ultraluminous galaxies are the most extreme examples of star form-
ing systems. The definition of both of these classes is somewhat vague, but a
working definition is that for a starburst the measured rate of star formation is
so large that the available gaseous fuel would be used in a period of time very
much less than a Hubble time, say about 100 Myr. Ultraluminous galaxies have
far-infrared luminosities greater than 1012 L§ and infrared star formation rates of
order 50-1000 M§yr≠1.
The archetypal starburst galaxy is M82. The star-formation is concentrated in a
nuclear region - a nuclear starburst. The associated supernovae drive a galactic-
scale outflow of hot gas which is clearly visible in the X-ray image shown on Figure
7.2.
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7.5 Global stellar feedback
Stellar winds, photoionisation and supernova explosion have a cumulative e�ect of
suppressing star formation, i.e. have a negative feedback e�ect onto star formation.
More specifically :

• heating by shocks and photoionisation makes the collapse and fragmentation
of molecular clouds more di�cult (because e�cient cooling requires radiation
from molecules and dust which are often destroyed in these environments)

• Galactic winds (mostly produced by the cumulative e�ect of SN explosions
and radiation from young O-B stars) expel gas out of the galaxy, hence
remove fuel available for star-formation.

The latter mechanism is most important in low mass galaxies for which the grav-
itational potential well is not deep enough to retain the gas.

7.6 Feedback from Supermassive Accreting Black Holes
Supermassive Black Holes are found in the nuclei of most galaxies, and their masses
are seen to be proportional to the mass of the stellar spheroid (bulge or whole
galaxy in the case of an elliptical galaxy) in a ratio of MBH ≥ 10≠3Msph.
The accretion of black holes is a much more e�cient process of converting mass
into radiation, than the nuclear fusion in the stellar interiors. Indeed the accreting
matter, as a consequence of angular momentum conservation, forms an accretion
disc. Within the accretion disc, viscosity converts gravitational energy into thermal
energy, making the disc very hot (temperatures in excess of 105K), hence the
thermal energy is radiated away (Black Body radiation, mostly in the UV).
The luminosity from black hole accretion can be very high, resulting in very lumi-
nous nuclei, called Active Galactic Nuclei (AGN), which can photoionise gas clouds
over large galactic regions. QSOs (or Quasars) are the most extreme version of
AGNs, in which luminosity associated with the accreting supermassive black hole
is so high (> 1012L§) to outshine the rest of the galaxies (hence their images
appear star-like, hence their name "Quasi Stellar-Objects", or QSOs).

7.6.1 The Eddington Limit
Accretion can occur only if the luminosity of the accretion disc is lower than the
so-called Eddington limit. The latter is given by the condition that the (inwards)
gravitational force must be larger than the (outwards) radiation pressure. Radia-
tion pressure is dominated by Thomson scattering of photons on electrons, while
gravitational force is dominated by protons (photons and electrons are coupled
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through Columbian drag forces), therefore the condition for accretion is :

1
4fir2

L

c
‡e <

GmpMBH

r2 (7.1)

therefore :
L < Ledd = 4ficGmp

‡e
MBH (7.2)

replacing the numerical values :

Ledd ¥ 3 ◊ 104
3

MBH

M§

4
L§ (7.3)

This can be inverted to find the minimum black hole mass that can be associated
with an accretion luminosity :

MBH > 3 ◊ 10≠5
3

L

L§

4
M§ (7.4)

For QSOs :

LQSO ≥ 1012 ≠ 1014L§ (7.5)
MBH > 3 ◊ 107 ≠ 3 ◊ 109M§ (7.6)

7.6.2 Mass to energy e�ciency
In accretion discs the loss of gravitational energy allows matter in the disc to
move towards inner orbits. Consider an element of mass dm, in the accretion disc,
moving from an orbit with radius r + dr to an orbit with radius r. From the virial
theorem half of the variation of gravitational potential energy must be radiated
away:

dErad = ≠1
2

GMdm

r + dr
≠

3
≠1

2
GMdm

r

4
(7.7)

where M is the mass of the central object (in this case, the supermassive black
hole). Hence the luminosity is :

dL = dErad

dt
= 1

2GM
dM

dt

31
r

≠ 1
r + dr

4
= 1

2GMṀ
dr

r2 (7.8)

by integrating :

L =
⁄ Rin

Rout

dL = 1
2GMṀ

3 1
Rin

≠ 1
Rout

4
¥ 1

2
GMṀ

Rin
(7.9)

The e�ciency of conversion of matter into energy is given by :

L = ‘Ṁc2 (7.10)
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therefore
‘ = GM

2c2Rin
(7.11)

From general relativity, it can be shown that, for a non-rotating black hole, the
innermost stable orbit is :

Rin = 3RSch = 6GM

c2 (7.12)

where RSch = 2GM/c2 is the so-called Schwartzschild radius. Therefore :

‘ = 1/12 ¥ 0.1 (7.13)

which is much higher than e�ciency achieved by the nuclear fusion of hydrogen in
the interior of stars (‘nuc ≥0.007).

7.6.3 AGN Feedback
As a consequence of the high mass-to-energy conversion e�ciency, a black hole of
mass MBH , in the process of accreting matter, must have radiated an amount of
energy given by :

EBH = 0.1MBHc2 (7.14)
The gravitational binding energy of a bulge, or of a spheroidal galaxy, of mass
Mgal is given by :

Egal ≥ Mgal‡
2 (7.15)

where ‡ is the stellar velocity dispersion. Since MBH ≥10≠3Msph, it follows that :

EBH

Egal
¥ 10≠4

3
c

‡

42
(7.16)

Most galaxies have ‡ < 400km s≠1, hence :
EBH

Egal
> 80 (7.17)

therefore the energy produced by the growth of the black hole exceeds the binding
energy of the galaxy by a large factor. So in principle black hole accretion can
seriously "harm" its host galaxy. If even a small fraction of the produced energy
is transferred to the gas in the galaxy, then an accreting supermassive black hole
(i.e. an AGN) can have profund e�ects on the evolution of its host galaxy.

Understanding AGN feedback onto the host galaxy is currently subject of extensive
observational and theoretical studies. Here we only summarise that black hole
accretion can provide powerful feedback onto the host galaxy and surrounding
medium in two forms :
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• when it is radiating at "Quasar"-like luminosities (L > 1012L§, this gener-
ally happens when a BH with mass >107M§ accretes close to the Eddington
rate) then radiation pressure can produce a powerful nuclear wind, which
shocks and heats the ISM in the host galaxy, and generates a powerful outflow
that expels gas out of the galaxy. Direct radiation pressure from the AGN
onto the dusty clouds also contribute to the outflow. AGN-driven massive
outflows have recently been observed in quasar host galaxies. Both observa-
tions and theoretical calculations show that powerful quasars can potentially
completely clean a galaxy out of their ISM, hence completely quenching star
formation. This is often referred to as "quasar-mode" feedback.

• when the accreting black holes produce powerful radio jets (this happens gen-
erally when the BH is accreting at significantly sub-Eddington rates) then
the energy injected into the intergalactic and intracluster medium keeps such
medium hot, preventing it to cool and feed the central galaxy with new gas.
This feedback e�ect onto the intracluster medium is observed as cavities
generated into the X-ray emitting medium, associated with the radio-lobes
created by the relativistic radio jet. This is often referred to as "radio-mode"
feedback.

The two processes are thought to act in a sequence. Once the elliptical massive
galaxy has been cleaned of its gas by the quasar mode, then the radio-mode pre-
vents the massive galaxy from accreting new gas and therefore prevents additional
star formation. The galaxy then evolves passively into an old elliptical.

7.6.4 The relative role of di�erent feedback processes
We will see more in detail in the next chapter that the stellar mass function
of galaxies di�ers significantly from the mass function of Dark Haloes in which
galaxies are hosted, the former being much flatter at lower masses and much steeper
at high masses. If baryons in all halos were forming stars with the same e�ciency,
then the two mass functions should be identical in shape (scaled by the M/L ratio).
The currently favoured scenario is that negative feedback processes are responsible
for such deviations. More specifically, stellar feedback is responsible for reducing
the e�ciency of star formation predominantly in low mass galaxies, while AGN
feedback is responsible for quenching star formation predominantly in high mass
galaxies.
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8.1. COLLISIONS BETWEEN STELLAR SYSTEM 1238. Galaxies interaction andtriggering star
formation

The black holes of nature are the
most perfect macroscopic objects
there are in the universe: the only
elements in their construction are
our concepts of space and time.

— Subrahmanyan Chandrasekhar

In this chapter, we will discuss how interaction between galaxies can trigger the
star formation.

8.1 Collisions between stellar system

8.1.1 Stellar collisional cross section and relaxation time
We start by estimating the collision cross section for strong gravitation interactions
making the following assumptions :

• We identify a pair-wise collision as one in which the star is significantly
deflected

• this will occur if :
1
2mv2 ≥ Gm2

r
(8.1)

which gives the scattering radius :

rs ≥ 2Gm

v2 (8.2)

• The e�ective cross section is therefore defined as :

fir2
s ≥ fi

32Gm

v2

42
(8.3)
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Figure 8.1 : Stellar scattering via gravitational interaction

The mean free path for strong collision is ⁄ = 1
n‡ and the collision time is ts = ⁄

v ,
or :

ts = v3

4fiG2m2n
= 4 ◊ 1012 yr

3
v

10km/s

43 3
m

M§

4≠2 3
n

1pc≠3

4≠1
(8.4)

We can then conclude that even strong gravitational collisions do not occur.

However, we still need to consider interactions which give rise to a small interaction.
For example, consider a star which is almost undeflected : the net force over the
interaction is perpendicular to the direction of travel and for an impact parameter1

b, we have :
F‹ = GmMb

(b2 + v2t2)3/2 = M
dv‹
dt

(8.5)

integrating over the interaction gives :

�v‹ = 1
M

⁄ +Œ

≠Œ
F‹dt = 2Gm

bv
(8.6)

1
The impact parameter is the perpendicular distance to the closest approach if the projectile

were undeflected
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The momentum is conserved by the fact that the second star (here assumed sta-
tionary) must have a �v‹ in the opposite sense. As the star undergoes many small
deflections, we may assume they are in random directions giving < �v‹ >= 0.

We now integrate over all encounters.
The number of collisions with b æ b + db is vt ◊ 2fibdb ◊ n:

< �v2
‹ >=

⁄ bmax

bmin

32Gm

bv

42
nvt2fib db = 8fiG2m2nt

v
ln

3
bmax

bmin

4
(8.7)

and we write :
ln � = ln

3
bmax

bmin

4
(8.8)

The relaxation time is the time taken for < �v2
‹ >= v2, hence :

tr = v3

8fiG2m2n ln � = ts

2 ln � (8.9)

8.1.2 Collisions in stellar systems
We can quantify the degree to which stars interact using the collisional relaxation
time (eq.8.9). We need to estimate ln � = ln(bmax/bmin). For an isolated system
of N stars and size R we can estimate :

• bmax ≥ R

• bmin ≥ rs for consistency

We can also apply the virial theorem to this system :

2 ◊ 1
2Nmv2 = G(Nm)2

R
(8.10)

and obtain v2R = GNm.
Then :

� = bmax

bmin
= R ◊ v2

2Gm
= 1

2N (8.11)

The typical time for a star to cross the system is defined as the crossing time :

tc ¥ R

v
(8.12)

Since n = N
4
3 fiR3 we find :

tr

tc
= v

R

v3 4
3fiR3

8fiG2m2N ln � = N

6 ln(N/2) (8.13)
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For a galaxy, with N ≥1011 stars : tc ≥ 107 ≠ 108 yr and tr ≥108tc much longer
than the Hubble time. Similarly, for a globular cluster with N ≥106, we find that
tr ≥1010 yr. Therefore most of the stellar systems are collisionless.

8.1.3 Dynamical friction
By definition, the dynamical friction (also called the Chandrasekhar friction), is
loss of momentum and kinetic energy of moving bodies through gravitational in-
teractions with surrounding matter in space. It was first discussed in detail by
Subrahmanyan Chandrasekhar in 1943.
Recall the result we had for the change in velocity perpendicular to nearly unde-
flected path of a particle of mass M as it passes a mass of m :

�v‹ = 2Gm

bv
(8.14)

By conservation of momentum, the particles of mass m should also su�er a change
in perpendicular velocity of :

�V‹ = 2GM

bv
(8.15)

The total change in kinetic energy of the system due to these changes in perpen-
dicular velocity is :

�Ek,‹ = M

2

32Gm

bv

42
+ m

2

32GM

bv

42
= 2G2mM(M + m)

b2v2 (8.16)

This energy can only come from the forward motion of M, i.e. �Ek,‹ + M
2 �v2

|| = 0,
but :

1
2�(v2

||) = v||�v|| ¥ v�v|| (8.17)

hence :
≠ �v|| ¥ �Ek,‹

Mv||
= 2G2m(M + m)

b2v3 (8.18)

Finally we again integrate over all impact parameters to give :

≠ dv

dt
=

⁄ bmax

bmin

nv
2G2m(M + m)

b2v3 2fib db = 4fiG2(M + m)fl
v2 ln � (8.19)

We now apply this model to the interaction of two galaxies. We identify M as the
mass of an entire galaxy and fl = nm as the density within the interacting galaxy.
We again define a relaxation time :

tr = v

|v̇| = v3

4fiG2Mfl ln � (8.20)

This will be the timescale on which dynamical friction acts to dissipate the bulk
kinetic energy of the interacting systems and allow the galaxies to merge.
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Figure 8.2 : Example of interacting galaxies as seen by the Hubble Space Telescope.
Source : NASA, ESA, the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration,
and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

8.2 Interacting galaxies
In the first part of this course, we have always considered galaxies as independent
isolated systems. But as we all know, galaxies show a remarkable range of di�erent
structures. We begin this section by reviewing some of these.
Many galaxies, including our own, have lower-mass companions with who they
are interacting gravitationally. In many cases, the e�ects of these interactions are
relatively small. One famous example is M51 for which its companion is possibly
the cause of the extremely well defined spiral arms (Figure 8.3). Simulations show
that even modest tidal perturbations can trigger the formation of tidal densities
waves as we have discussed earlier.

Figure 8.4 is an image from the Hubble Space Telescope showing two interacting
spiral galaxies (LEDA 62867 and NGC 6786) and again with well-defined spiral



8.2. INTERACTING GALAXIES 128

Figure 8.3 : M51, also known as the Whirlpool Galaxy, is interacting with a small
companion which is probably responsible for the well defined arms. Source : NASA, ESA,
S. Beckwith (STScI) and the Hubble Heritage Team (STScI/AURA)

Figure 8.4 : HST color image of LEDA 62867 and NGC 6786. Simulations show that
although at a very early stage, this system will lead to a merger between the two galaxies
in few billion years. Source : NASA / ESA / HST
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Figure 8.5 : HST color image of Arp 256.Source : NASA / ESA / HST

arms. A supernovae has been observed in the large spiral in 2004. Although at
a very early stage, it is possible that this system will lead to a merger between
the two galaxies. Another interesting system to look at is Arp 256 (Figure 8.5), a
stunning system with two spiral galaxies in an early stage of merging. The Hubble

image shows two galaxies with strongly disrupted morphologies and an astonishing
number of blue knots of star formation which have been triggered by the interac-
tion. Note also the characteristic tidal tails associated with the galaxy to the left.
Tidal tails are a direct indication of a strong gravitational interaction.

In advanced stages (Figure 8.6) intense regions of star formation appear as long
threadlike structures located between the main galaxy cores. The system almost
qualifies as an ultra-luminous system, but has not yet reached the late stage of co-
alescence that is the norm for the most ultra-luminous system. IC 883 (Figure 8.7)
has a very disturbed, complex, central region with two tidal tails of approximately
the same length emerging at nearly right angles : one diagonally to the top right
of the frame and the other to the bottom right. The twin tidal tails suggest that
IC 883 is the remnant of the merger of two gas-rich galaxies. The collision appears
to have triggered a burst of star formation, indicated by a number of bright star
clusters in the central region.
Figure 8.8 shows the early merger Arp 270 (where the galaxy disks are still very
distinct). Di�use X-ray emitting gas with T < 106K is seen associated with two
galaxy disks and several point sources of varying hardness (temperatures) are seen
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Figure 8.6 : HST color image of II ZW 96.Source : NASA / ESA / HST

Figure 8.7 : HST color image of ICC 883 (also known as Arp 193) .Source : NASA /
ESA / HST
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Figure 8.8 : Two views of the galaxies Arp 270 : (left) X-Ray image from the Chandra

Space Observatory colour coded such that red representents soft X-ray emission (0.2-0.9
keV), green intermediate (0.9-2.5 keV) and blue hard X-Ray (2.5-10 keV). (Right) optical
image. Source : NASA/U. Birmingham/A.Read

scattered within the galaxies. Of particular note are the hard X-ray sources seen
where the disks collide, probably resulting from strong star-formation.

Despite the very extensive range of observed structures, the physics of these pro-
cesses seem to be relatively simple, dominated by pure gravitation interactions.
We can successfully model galaxies in this context as being composed just of col-
lisionless massive particles - either stars and/or dark matter. An example of a
simulation of a pair of galaxies which undergo merger is shown on Figure 8.9. We
can apply our analysis of dynamical friction developed earlier. The expression we
had was :

tr = v

|v̇| = v3

4fiG2Mfl ln � (8.21)

To get a first estimate, we approximate ln ⁄ ≥ 1 and take similar values to those
used in the simulation :

• v ≥ 200 km/s

• M ≥1010M§

• central density : fl ≥108M§ kpc≠3

Our dynamical friction relaxation time then gives as timescales 8◊108yrs. In the
simulation, the time taken from the point where the discs first overlap to comple-
tion of merger is about 1 billion years, in remarkably good agreement with our
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Figure 8.9 : Simulation of two merging galaxies with similar masses. The time is indi-
cated in billion years. Source : Springel et al. (1999)
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simple estimate.

Triggering of star formation during galaxy interactions is a complex process. To
illustrate some of the physics. Figure 8.11 show the results of a simulation which
includes a simple model for star formation which is determined by cloud build-up
as well as following the gas in the galaxy. What we see is that as a result of strong
perturbating the system with the passage of a satellite galaxy :

• Spiral density waves are induced with a very clear two-armed spiral in the
gas

• Shocks and cloud-collisions dissipate the kinetic energy of the cloud popula-
tion and gas accumulates on the inner Lindblad resonance.

• The high gas density leads to a burst of star formation

• After a further period of time, the gas dissipates more kinetic energy and
accumulates in the nucleus of the galaxy giving rise to a second burst of star
formation

• Models expect that a fraction of the gas accumulated in the nuclear region
can accrete onto the nuclear supermassive black hole, i.e. trigger quasar
activity (or more generally an AGN).

8.2.1 ULIRGs as merging systems
These expectations and predictions of theoretical models and numerical simula-
tions are clearly observed in ULIRGs. The ultra-luminous galaxies (ULIRGs)
invariably show strong signs of interactions and mergers. The sample of images
of distant ULIRGs shows a range of disturbed morphologies. Tidal interactions
and merging after the circular motion of clouds causing cloud-cloud collisions re-
sulting into loss of angular momentum, which allows clouds to flow towards the
center of the galaxy to feed star formation in the central region and, often, black
hole accretion (i.e. AGN/quasar activity). Indeed, in ULIRGs we observe that
star formation is generally concentrate in the central few hundred parsecs (1kpc
at most) and that they also often host a luminous AGN (typically a quasar, which
is however often deeply obscured by dust).

8.2.2 Nuclear fuelling through stellar bars
An additional mechanism that can drive gas towards the center, hence triggering
a nuclear starburst or accretion onto a supermassive black hole, is the formation
of a stellar bar (often triggered by even mild galaxy interaction) :
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Figure 8.10 : Exemple of Ultra-Luminous Infrared Galaxies observed with the Hubble

Space Telescope. Source : NASA/ ESA/ HST
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• the bar is a very strong non-linear perturbation which can exist within the
inner Lindblad resonance

• Gas on circular orbits encountering the bar at supersonic velocities is shocked

• kinetic energy is dissipated and the gas accumulates in the bar

• Orbits in the bar are highly elongated bringing gas and stars to the nucleus



8.2. INTERACTING GALAXIES 136

Figure 8.11 : Simulation of a disc galaxy including gas and a simple model for star
formation. The images show the gas density. The system is perturbed by the passage of
a satellite galaxy. Two bursts of star formation are triggered in this system.



137



9.1. STARTING POINT 1389. Gravitational instabili-ties in the cosmological
context

In a spiral galaxy, the ratio of
dark-to-light matter is about a
factor of 10. That’s probably a
good number for the ratio of our
ignorance-to-knowledge. We’re out
of kindergarten, but only in about
third grade.

— Vera Rubin

In this chapter we will describe the cosmological evolution of structure formation
by considering the growth of perturbations in the early Universe. We will based our
discussion on your last term course on Relativistic Astrophysics and Cosmology.

9.1 Starting point
We assume an expanding universe governed by the cosmological field equations as
follow :

R̈

R
+ 4fiGfl

3 (1 + ‘) ≠ �
3 = 0 (9.1)

A
Ṙ

R

B2
≠ 8fiGfl

3 ≠ �
3 = ≠kc2

R2 (9.2)

We assume the so-called �CDM cosmology with :

• A flat geometry with �� + �m =1

• �� ≥0.7, �m ≥0.3 and �b ≥0.044

• The seeds of structure are quantum fluctuations which are amplified by in-
flation. This gives the Harrison-Zel’dovich spectrum in which the power in
the fluctuations is approximately independent of linear scale.
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We recall hereafter the definition of some cosmological parameters :

H = Ṙ

R
(9.3)

�� = �
3H3 (9.4)

�m = fl

3H2/8fiG
(9.5)

1 ≠ �m ≠ �� = ≠ kc2

R2H2 (9.6)

9.2 Jeans instability in an expanding Universe
In the following section, we will start with the equations of hydrodynamics and will
eventually do a perturbation analysis. Our approach will be to look at deviations
from the smooth expansion of the universe in a co-moving frame. In this frame, we
will have a background of the cosmological expansion, but the deviations we expect
to be small and therefore can be approximated, not only by a perturbation anal-
ysis, but also by locally using non-relativistic equations for the fluid and treating
gravitational perturbations as su�ciently small that a Newtonian approximation
is justified.

9.2.1 Fluid equation in co-moving coordinates
The relationship between proper distance and comoving coordinates is :

r = R(t)‰ (9.7)

Di�erentiating with respect to times gives the velocity :

u = ˙R(t)‰ + R(t)‰̇ = ˙R(t)‰ + v (9.8)

where we identify ˙R(t)‰ as arising from the Hubble expansion and v = R(t)‰̇ is
the peculiar velocity, i.e. the velocity which is superimposed on the Hubble flow.
Given our approximation, the equations describing the fluid have their familiar
form:

The equation of continuity:
3

ˆfl

ˆt

4

r
+ Òr · (flu) = 0 (9.9)

The Euler equation:
3

ˆu

ˆt

4

r
+ u · Òru = ≠1

fl
Òrp ≠ Ò� (9.10)

The Poisson’s equation : Ò2� = 4fiGfl (9.11)
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In these expressions, the di�erentials are with respect to proper distance. We now
transform these equations to a co-moving frame. To do so, we note the following :
• Transforming the gradient to co-moving coordinates is given by:

Òr æ 1
R

Ò‰ (9.12)

• For the time derivative, this becomes :
3

ˆ

ˆt

4

r
æ

3
ˆ

ˆt

4

‰
+

3
ˆ‰

ˆt

4

r
· Ò‰ =

3
ˆ

ˆt

4

‰
≠ Ṙ

R
‰ · Ò‰ (9.13)

where we have used :
3

ˆ‰

ˆt

4

r
=

3
ˆr/R

ˆt

4

r
= ≠ Ṙ

R2 r = ≠Ṙ

R
‰ (9.14)

We start by rewriting the equation of continuity (from now all partials are at
constant ‰) :

ˆfl

ˆt
≠ Ṙ

R
‰ · Ò‰fl + 1

R
Ò‰ · (fl(Ṙ‰ + v)) = ˆfl

ˆt
≠ Ṙ

R
‰ · Ò‰fl (9.15)

+ Ṙ

R
‰ · Ò‰fl + Ṙ

R
flÒ‰ · ‰ + 1

R
Ò‰ · (flv)

(9.16)

= ˆfl

ˆt
+ 3Ṙ

R
fl + 1

R
Ò‰ · (flv) (9.17)

or
ˆfl

ˆt
+ 1

R
Ò‰ · (flv) = ≠3fl

Ṙ

R
(9.18)

The new term is just related to the change in density due to the overall cosmic
expansion

We now transform the Euler equation, following the same approach, and we obtain:

ˆv

ˆt
+ 1

R
v · Ò‰v + Ṙ

R
v = ≠ 1

Rfl
Ò‰P ≠ 1

R
Ò‰� ≠ R̈‰ (9.19)

The final term can be written as :

R̈‰ = 1
2R̈Ò‰‰2 = 1

R
Ò‰

31
2RR̈‰2

4
(9.20)
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The reason for this manipulation is that we can define a new potential function „g

= � + 1
2RR̈‰2, and the Euler equation then becomes :

ˆv

ˆt
+ 1

R
v · Ò‰v + Ṙ

R
v = ≠ 1

Rfl
Ò‰P ≠ 1

R
Ò‰„g (9.21)

Before rewriting the Poisson’s equation, we return to the cosmological field equa-
tions for the homogeneous universe :

R̈

R
+ 4fiGfl̄

3 (1 + ‘) ≠ �
3 = 0 (9.22)

A
Ṙ

R

B2
≠ 8fiGfl̄

3 ≠ �
3 = ≠kc2

R2 (9.23)

where we have explicitly included the mean density of the universe fl̄.
In the limit of a non-relativistic fluid and at early enough epochs so that we may
ignore the � term, then the previous equations can be written as :

R̈

R
+ 4fiGfl̄

3 = 0 (9.24)

Finally we consider Poisson’s equation :

1
R2 Ò2

‰„g = 1
R2 Ò2

‰

3
� + 1

2RR̈‰2
4

(9.25)

in spherical polar coordinates :

Ò2
‰

1
2‰2 = 1

2‰2
ˆ

ˆ‰
‰2 ˆ‰2

ˆ‰
= 3 (9.26)

Substituting for Ò2� from the Poisson’s equation and using the field equation to
eliminate R̈ we get :

1
R2 Ò2

‰„g = 4fiGfl ≠ 4fiGfl̄ = 4fiGfl̄� (9.27)

where we have for the density :

fl = fl̄(1 + �) (9.28)

where � is the density contrast.
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9.2.2 Governing equations for the overdensity
We can make further simplifications by keeping only terms which are first order in
small quantities. We have already introduced v, the small peculiar velocity, and
for the pressure, assuming an equation of state in which P is only a function of fl,
we expand about its mean value P (fl̄) :

P ¥ P (fl̄) + dP

dfl
fl̄� = P (fl̄) + c2

sfl̄� (9.29)

From the cosmological principle ÒP (fl̄) = 0 and we assume the adiabatic sound
speed c2

s to be a constant. To first order, in small quantities we have :

ˆ�
ˆt

+ 1
R

Ò‰ · v = 0 (9.30)

ˆv

ˆt
+ Ṙ

R
v = ≠c2

s

R
Ò‰� ≠ 1

R
Ò‰„g (9.31)

1
R2 Ò2

‰„g = 4fiGfl̄� (9.32)

To complete the analysis, we take the time derivative of the continuity equation,
the divergence of the Euler equation and eliminate the dependence of the peculiar
velocity. Finally we seek solutions of the form :

� = �(t) exp(ikc · ‰) (9.33)

This gives the following equation for the time dependant overdensity for wave
number k = kc/R :

d2�
dt2 + 2

A
Ṙ

R

B
d�
dt

= (4fiGfl ≠ k2c2
s)� (9.34)

9.2.3 The growth of instabilities
The growth of density perturbations is governed in the linear regime by eq.9.34.
Let’s contrast the growth of instabilities in a non-expanding universe.

We recover the analysis we performed for the stability of an interstellar cloud as
follows :

• recover the equivalent to a static universe by setting : Ṙ = 0

• seek solutions of the form : � = �0 exp i(kc · ‰ ≠ Êt)
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We then get the dispersion relation we had before :

Ê2 = c2
sk2 ≠ 4fiGfl (9.35)

This gives exponentially growing modes for c2
sk2 < 4fiGfl, or :

⁄ > ⁄J = cs

3
fi

Gfl

41/2
(9.36)

when ⁄ ∫ ⁄J the modes grow like exp(t/·) where · ≥ (4fiGfl)1/2.

In the expanding Universe, we consider the simplest model of a flat universe the
Einstein-de-Sitter universe which has the following properties :

�0 = 1 (9.37)
R

R0
=

3
t

t0

42/3
=

33
2H0t

42/3
(9.38)

H2 = 8fiGfl

3 (9.39)

4fiGfl̄ = 2
3t2 (9.40)

We also consider the case where the gravitational attraction is much stronger than
the pressure force :

4fiGfl̄ ∫ c2
sk2 (9.41)

The equation for � reduced to :

d2�
dt2 + 4

3t

d�
dt

≠ 2
3t2 � = 0 (9.42)

It is easy to verify that for solutions of the form � Ã tn, the growing modes have :

� Ã t2/3 Ã R Ã (1 + z)≠1 (9.43)

The key element of this result is that the perturbations only grow algebraically,
and not exponentially with time. This basic result is similar for other cosmologies
as well.

We can modify this analysis to account for the early radiation dominated phase of
the Universe :

• the expression 4fiG in the equation for � is replaced by 32fiG/3

• furthermore in the radiation dominated phase of the universe R Ã t1/2

we find that :
� Ã t Ã R2 Ã (1 + z)≠2 (9.44)
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9.3 The need for dark matter
The results of the previous section lead to a major problem. We start by restat-
ing the problem then provide a detailed analysis of how dark matter resolves the
problems.

In the early, radiation dominated, universe, when matter and radiation are strongly
coupled : fl Ã 1/R3 Ã T 3, giving :

� = ”fl

fl
¥ 3”T

T
(9.45)

From Planck observations of the CMB, we have an excellent measurement of ”T
T ≥

10≠5, implying � ¥ 3 ◊ 10≠5 at the epoch of recombination (z ¥ 1500). After
recombination, the matter perturbations grow via gravity approximately according
to the results of the previous section implying :

�(t = t0) ≥ 0.05 (9.46)

which is not the case !

9.4 Perturbations with dark matter
Let us now consider the presence of baryonic and dark matter represented by
density contrasts �B and �D respectively. We now need to solve the coupled
equations :

d2�B

dt2 + 2
A

Ṙ

R

B
d�B

dt
= Afl̄B�B + Afl̄D�D (9.47)

d2�D

dt2 + 2
A

Ṙ

R

B
d�D

dt
= Afl̄B�B + Afl̄D�D (9.48)

(9.49)

which are valid for both matter dominated universe and for the radiation domi-
nated case depending on the choice of the constant A.

Consider first the epoch immediately after recombination so that A = 4fiG :

• To illustrate the result we consider the case where �D ¥ 1 and �B π 1

• the second equation reduces to the case we have already considered :

fl̄b�B π fl̄D�D (9.50)
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and
R = R0

33
2H0t

42/3
(9.51)

• We write the solution as �B = BR where B is a constant.

The equation for �B is then :

d2�B

dt2 + 2
A

Ṙ

R

B
d�B

dt
= 4fiGfl̄D�D (9.52)

changing independent variable to R, we find (after a little algebra) :

R3/2 d

dR

3
R≠1/2 d�B

dR

4
+ 2d�B

dR
= 3

2B (9.53)

which has the solution �B = B(R ≠ R0), or :

�B = �D

3
1 ≠ z

z0

4
(9.54)

which implies that the amplitude of the baryonic perturbation quickly grows to
that of the dark matter no matter how small the baryonic perturbations is at
z = z0, e.g. at recombination.

9.5 Evolution of perturbations
We can now begin to understand the process of structure formation :

• In the very early Universe, any initial perturbations on scales larger than the
Jeans length grow as R2 since we are radiation dominated. At this stage the
amplitude of the perturbations in baryonic matter, dark matter and radiation
are equal since they are coupled.

• If the dark matter is made of heavy particules, as we assume in the Cold
Dark Matter (CDM) cosmologies, then the cold dark matter decouples from
the radiation at an early epoch.

• At a redshift of zeq ¥ 4 ◊ 104�h2 the universe switches from radiation to
matter dominated although the baryonic gas remains tightly coupled to the
radiation

• Perturbations in the CDM grow at a rate of Ã R, however perturbations in
the radiation and baryonic gas are damped :
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– photon pressure and di�usion of photons are both important and indeed
the fluctuations in the photon+baryon fluid oscillate rather than grow

– this explains the low values of �T/T which are observed

• After the epoch of recombination, the baryonic matter decouples from the
radiation and quickly perturbations in the baryonic gas start to follow those
in the CDM as we have shown.

To finish this part of our discussion, we calculate the Jeans mass just after the re-
combination ; this will give an indication of the typical masses of the first structure
to form.
The Jeans length is given by :

⁄J = cs

3
fi

Gfl

41/2
(9.55)

and the sound speed is c2
s = 5kBT/3mH .

The Jeans mass is the mass within this perturbations :

MJ = 4fi

3

3
⁄J

2

43
flm (9.56)

and flm = (1 + zeq)3flc�m.
Therefore, the numerical application of the previous equation gives MJ ≥ 3 ◊
105M§.
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10.1. THE POWER SPECTRUM OF THE FLUCTUATIONS 14810. Evolution of fluctua-tions, non-linear collapse
and hierarchical structureformation

Find the joy and satisfaction in
what you do, and don’t be too
swayed by what other people think
of your choices.

— Hiranya Peiris

In this chapter we continue our discussion of cosmological structure formation.
Firstly we discuss the primordial perturbation spectrum and how this evolves. In
order to discuss galaxy formation we need to consider how the small perturbations
we discussed in the last chapter grow - this requires us to follow their evolution
into the non-linear regime. We will then discuss the hierarchical clustering model
for structure formation. All of this will be done considering just cold dark matter.
To form real galaxies, we then discuss how the baryonic gas evolves and how the
system form stars.

10.1 The power spectrum of the fluctuations

10.1.1 The two-point correlation function
The power-spectrum1 of the fluctuations is a key parameter for structure forma-
tion: it determines the mass-spectrum of the initial perturbations and also the
initial spatial distribution of structure.

We start by defining the two-point correlation function, which describes the excess
of probability of finding a density enhancement (i.e. a galaxy) at distance r from
a density enhancement, randomly selected in a uniform, random distribution. The

1
By definition, the power spectrum is commonly defined as the Fourier transform of the auto-

correlation function
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number of galaxies in the volume element dV at distance r from any galaxy is :

dN(r) = N0[1 + ›(r)]dV (10.1)

where N0 is the average background number density of galaxies. ›(r), the two-
point correlation function, can also be written in terms of the probability of finding
pairs of galaxies separated by distance r :

dNpair = N2
0 [1 + ›(r)]dV1 dV2 (10.2)

The two-point correlation function can be directly related to the density contrast
� = ”fl/fl. We write fl = fl0[1 + �(x)] and so the pairwise numbers of galaxies
separated by r is :

dNpair(r) = fl(x)dV1 fl(x + r)dV2 = fl2
0[1 + �(x)][1 + �(x + r)] dV1 dV2 (10.3)

Taking averages over a large number of volume elements, the mean value of � is
zero by definition, and therefore the two-point correlation function becomes :

dNpair(r) = fl2
0[1+ < �(x)�(x + r) >] dV1 dV2 (10.4)

hence :
›(r) =< �(x)�(x + r) > (10.5)

10.1.2 The power-spectrum of the fluctuations
We start by defining the Fourier transform for �(r) :

�(r̨) = V

(2fi)3

⁄
�k exp(≠ik̨ · r̨) d3k̨ (10.6)

with �k = 1
V

⁄
�(r) exp(ik̨ · r̨) d3x̨ (10.7)

Parseval’s theorem 2 gives :

1
V

⁄
�2(r̨)d3x = V

(2fi)3

⁄
|�k|2 d3k̨ (10.8)

where |�k|2, also noted P (k) is the power spectrum of the fluctuations.
The left hand side of eq.10.8 is the mean squared density contrast, hence :

< �2 >= V

(2fi)3

⁄
|�k|2d3k = V

(2fi)3

⁄
P (k) d3k̨ (10.9)

2
In mathematics, Parseval’s theorem usually refers to the result that the Fourier transform is
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Since the two-point correlation function is spherically symmetric, the element of
k-space can be written d3k̨ = 4fik2 dk, then:

< �2 >= V

2fi2

⁄
|�k|2k2 dk = V

2fi2

⁄
P (k)k2 dk (10.10)

We can also write �(x) as a fourier series :

�(x̨) = �k�k exp(≠ik̨ · x̨) (10.11)

But ›(r̨) =< �(x̨)�(x̨ + r̨) >, hence :

›(r̨) =
e ÿ

k

ÿ

kÕ
�k�ú

kÕe≠i(k̨≠k̨Õ)·x̨eik̨Õ·r̨
f

(10.12)

Given the orthogonality of the Fourier basis, the cross terms vanish except for
those for which k = kÕ, and therefore :

›(r) =
ÿ

|�k|2 exp(ik̨ · r̨) (10.13)

or in terms of Fourier integral :

›(r) = V

(2fi)3

⁄
|�k|2eik̨·r̨d3k̨ (10.14)

Since ›(r) is real, we are only interested in the integral of the real part of eik·r,
i.e cos(k · r) = cos(kr cos ◊). Moreover, because of the spherical symmetry of the
two-point correlation function, we integrate over the angular part of the volume
element 1

2 sin ◊ d◊ :

›(r) = V

2fi2

⁄
|�k|2 sin kr

kr
k2 dk = V

2fi2

⁄
P (k)sin kr

kr
k2 dk (10.15)

Similarly, the inverse transform gives for the power spectrum :

P (k) = 1
V

⁄ Œ

0
›(r)sin kr

kr
4fir2 dr (10.16)

10.1.3 The initial Power-Spectrum
The observations of the CMB discussed last term suggest a power-law form for the
perturbation spectrum with no preferred scale :

P (k) = |�k|2 Ã kn (10.17)

then ›(r) has the following form :

›(r) Ã
⁄ sin kr

kr
kn+2dk (10.18)
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• sin kr
kr ≥ 1 for kr π 1 and decreases rapidly when kr ∫ 1, hence we can

integrate k from 0 to kmax ¥ 1/r to estimate the dependence of the amplitude
of the correlation function on the scale r :

›(r) Ã r≠(n+3) (10.19)

• the mass in the perturbation is M ≥ flr3, hence :

›(M) Ã M≠(n+3)/3 (10.20)

• The density contrast for a mass scale M , �(M), is :

�(M) =< �2 >1/2Ã M≠(n+3)/6 (10.21)

10.1.4 The Harisson-Zel’dovich Power Spectrum
The Harisson-Zel’dovich power spectrum has n = 1 hence :

�(M) Ã M≠2/3 and › Ã r≠4 Ã M≠4/3 (10.22)

10.1.5 Evolution of the Power Spectrum and transfer functions
The power spectrum is modified from its initial form as the universe evolves. This
is an extremely complicated process since it involves the physical interaction of
three fluids in an expanding universe: baryonic matter, non-baryonic matter and
photons. We can only give a flavour of this subject and show some results of de-
tailed calculations.

The transfer function T (k) describes how the shape of the initial power spectrum
�k(z) in the dark matter is modified by di�erent physical processes :

�k(z = 0) = T (k)f(z)�k(z) (10.23)

where :

• �k(z = 0) is the power spectrum at the present epoch

• f(z) Ã R is the linear growth factor between the scale factor at redshift z
and the present epoch.

In the following, we will outline one process which is important for the adiabatic

unitary; loosely, that the sum (or integral) of the square of a function is equal to the sum (or

integral) of the square of its transform.
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cold-dark matter we have been considering.

Consider an initial power-law power spectrum such as:
P (k) = |�k|2 Ã kn (10.24)

A critical point in the evolution of the perturbations is when their size is equal to
the horizon size. For a perturbation of size r this happens when r ¥ ct - we say
that the perturbation has come trough, or entered, the horizon.

• before the perturbation entered the horizon during the radiation-dominated
era, their density contrasts grew as �k Ã R2 on all scales

• if the perturbations came through the horizon during the radiation-dominated
phase, the dark matter perturbations were gravitationally coupled to the
radiation-dominated plasma, and their amplitudes were then stabilised.

• therefore as soon as the perturbations came through the horizon the pertur-
bations ceased to grow until the epoch of equality.

• after that time, all perturbations grew as �k Ã R

Between crossing their particle horizons at scale factor RH and the epoch of equal-
ity Req, the amplitudes of the perturbations were damped by a factor (RH/Req)2

relative to the unmodified spectrum :

�k Ã kn/2
A

RH

Req

B2
(10.25)

Since k Ã R≠1
H it follows that the transfer function T (z) has the asymptotic forms

:
Tk = 1 for M Ø Meq, k Æ keq (10.26)

Tk Ã k≠2 for M Æ Meq, k Ø keq (10.27)
Thus, for small masses, the ’processed’ power spectrum P (k) Ã T 2

k is flatter than
the input spectrum of perturbations by a power k≠4 :

P (k) = |�k|2 Ã kn≠4 (10.28)
and

›(r) Ã r≠(n≠1) or ›(M) Ã M≠(n≠1)/3 (10.29)
• For the Harisson-Zel’dovich spectrum with n = 1, the processed two-point

correlation function is flat at small wavelengths.

• Detailed modelling of the transfer function shows that in addition to this
large-scale damping we expect acoustic oscillations as discussed last term,
and observed in the power spectrum of the CMB.
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Figure 10.1 : Four examples of the transfer functions for models of structure formation
with baryons only (top) and with mixed cold and baryonic matter. From Einsenstein and
Hu 1998
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Figure 10.2 : The power spectrum of the three-dimensional distribution of galaxies in
the 2dF Galaxy Redshift Survey. The points with error bars are the best estimates of
the observed power spectrum once the biases and corrections for incompleteness are taken
into account. In the lower panel, the data from the upper panel have been divided by
a reference cold dark matter model with �D = 0.2, �� = 0 and �B = 0 which has a
smooth power-spectrum. The grey dashed-line is a best fitting model before convolution
with the window function for the survey. The solid line shows the best fit once the model
is convolves with the window function.
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10.2 Non-linear collapse of a spherical overdensity
To model the evolution of perturbations into the non-linear regime, we consider a
single spherical overdensity. Although this is clearly an unrealistic model, it has
the advantage of having an analytical solution. The reason for this is that just
as in the classical Gauss’s theorem, in general relativity for a perfectly spherical
geometry the mass inside a sphere is not influenced by the material outside the
sphere. We can therefore consider a sphere of gas as if it is a separate universe.
This model was introduced in the Relativistic Astrophysics and Cosmology course.
Now we find a detailed solution for this case.

Our assumptions are as follows :

• We imagine just one spherical overdense region of radius Rs and density fls

• For the background cosmology, we consider a spatially flat universe and for
algebraic simplicity we model this as an Einstein-de-Sitter universe. We
write for the mean density of the Universe fl̄ with scale factor R.

• To fix our ideas, we take recombination as a reference epoch. At this epoch,
we take the mean density in the universe to be given by fl0 = fl̄(t0) and the
scale factor for the Universe is R0. At this epoch, the mass and radius of the
overdensity are M and Rs0 and its density is :

fls0 = 3M

4fiR3
s0

(10.30)

• To simplify the algebra further, we choose a co-moving coordinates such that
the outer radius of our spherical overdensity has ‰ = 1, then the scale factor
is just the radius our overdensity would have if it expended with the Hubble
flow in our flat universe. At t = t0 therefore Rs0 = R0.

The evolution of both the universe as a whole and the overdensity are described
by the field equations :

R̈

R
+ 4fiGfl

3 (1 + ‘) ≠ �
3 = 0 (10.31)

A
Ṙ

R

B2
≠ 8fiGfl

3 ≠ �
3 = ≠kc2

R2 (10.32)
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10.2.1 Background Universe
For our Einstein-de-Sitter model, k = 0, � = 0, ‘ = 0, and we have the standard
solution :

�m = 1 (10.33)
R

R0
=

3
t

t0

42/3
=

33
2H0t

42/3
(10.34)

H2 = 8fiGfl̄

3 (10.35)

4fiGfl̄ = 2
3t2 (10.36)

10.2.2 Evolution of the overdensity
The overdensity means that for the region of the Universe within the radius Rs

the universe must be closed (since we have an overdensity) and hence k = 1.
The equation for the radius of the overdensity follows from eq.10.32 :

A
Ṙs

Rs

B2
≠ 8fiG

3
fls0R3

s0

R3
s

= ≠kc2

R2
s

(10.37)

At t = t0 the radius of the overdensity is Rs0 , the mean cosmological density is
fl0 and the overdensity is �s0fl0. To solve this equation, we have to follow the
following steps :

• we change independent variable to the conformal time : ÷ =
s t

0
cdtÕ

R(tÕ)

• we introduce a dimensionless radius : a = Rs/Rs0

• we define the constant am = 8fiGfls0R2
s0/3c2

• we also define :
�s = 8fiGfls

3H2
s

�s0 = 8fiGfls0

3H2
s0

(10.38)

If we further assume that the perturbation is still approximately following
the Hubble flow at t0 then Hs0 ¥ H0 and fls0 ¥ �s0fl0 where fl0 is the mean
density in our flat Einstein-de-Sitter universe at this epoch which we have
taken to be recombination.

With these definitions, we get the following di�erential equation :
31

a

da

d÷

42
= am

a
≠ 1 (10.39)
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Figure 10.3 : Non-linear collapse of a spherical overdensity

The solution with appropriate boundary conditions for our Big-Bang cosmology is
:

a = Rs

Rs0
= am

2 (1 ≠ cos ÷) (10.40)

t = Rs0

c

am

2 (÷ ≠ sin ÷) (10.41)

From the general solution to the dynamical equations, the overdensity will reach
a maximum radius, Rm at a time tm where :

Rm = amRs0 = �s0

�s0 ≠ 1Rs0 (10.42)

tm = fi

2
Rs0

c
am = fi�s0

2Hs0(�s0 ≠ 1)3/2 (10.43)

where we have used Rs0 = c
Hs0 (�s0 ≠1)1/2 .

• The overdensity will then collapse to its final state at a time t = 2tm

• We call the point where the overdensity reaches its maximum radius the
turn around

• The density within the collapsing overdense region at turn around is :

fls(tm) = fls0(Rs0/Rm)3 ¥ fl0�s0(Rs0/Rm)3 = fl0�s0

3�s0 ≠ 1
�s0

43
(10.44)
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whereas the mean density in the Universe at this time will be :

fl̄(tm) = fl0(Rs0/R(tm))3 (10.45)

where R(tm)is the radius a sphere of radius Rs0 at time t0 would have in the
smooth cosmological expansion at the time tm.

For an Einstein-de-Sitter cosmology :

R(tm)
Rs0

=
33

2H0tm

42/3
(10.46)

hence
fls(tm)
fl(tm) ¥

(�s0 ≠ 1)3�2
s0

(3H0tm/2)2 (10.47)

but
H0tm ¥ Hs0tm = fi�s0

2(�s0 ≠ 1)3/2 (10.48)

Therefore
fls(tm)
fl̄(tm) ¥

A
3fi�s0

4fi(�s0 ≠ 1)3/2

B2
◊ (�s0 ≠ 1)3

�2
s0

=
33fi

4

42
(10.49)

Therefore independent of the initial overdensity, we find at turn around :

fls(tm)
fl̄(tm) ≥ 5.6 (10.50)

The collapsed object forms at a time 2tm. The redshifts of turn around, zm, and the
formation redshift of the collapsed object, zf , are related in the Einstein-de-Sitter
universe by :

1 + zm

1 + zf
= R(2tm)

R(tm) = 22/3 ¥ 1.59 (10.51)

The collapse is halted by the internal pressure and the end state will be determined
by the virial equilibrium : object is virialised :

2Kv + �v = 0 (10.52)

where Kv and �v are respectively the internal energy (thermal + turbulent) and
gravitational potential energy of the final virialised object. If the collapsing object
has little kinetic energy at turn around (i.e. its peculiar velocity is small), then
conservation of energy gives :

≠ GM2

Rm
= Kv ≠ GM2

Rv
= ≠1

2
GM2

Rv
(10.53)
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or Rv = 1
2Rm and the density will be eight times the density at turn around. The

object has now fully decoupled from the Hubble flow.

The density of the universe at the formation epoch is given by :

fl̄(zf ) =
3 1 + zf

1 + zm

43
fl̄(zm) (10.54)

Hence we can write for the virialised density :

flv ≥ 5.6 ◊ 8 ◊ fl̄(zm) = (1.59)3 ◊ 5.6 ◊ 8 ◊ fl̄(zf ) (10.55)

hence :
flv ≥ 200fl(zf ) ≥ 200fl(z = 0)(1 + zf )3 (10.56)

That is to say that the final de-coupled virialised object has a density of 200 times
that of the universe at the epoch it forms.

10.3 Application to the Milky Way
As a first application of this result, we can estimate the formation epoch of di�erent
objects. Recalling that this result applies to all matter and is therefore dominated
by dark matter we can estimate the following :

• The Milky Way :

MDM ¥ 3 ◊ 1011M§ (10.57)
RDM ¥ 50 kpc (10.58)

• calculating flDM and comparing to fl̄0 gives zf ≥2.5. Larger, less dense
objects must form later, e.g. for a typical cluster on this analysis zf ≥1. Of
course the problem is much more complicated than this as we now discuss.

10.4 Hierarchical structure formation
The typical Jeans mass we found is crucial in understanding the process of galaxy
formation. The structures which initially form in a CDM cosmology are much
smaller than the scale of a typical galaxy which we find now. Indeed more detailed
calculations show that since the dark matter decouples at a very early epoch, per-
turbations on a wide range of scales are present after recombination.

The picture we have is then as follows :
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• The initial structures, over-densities, which form are comparatively small by
galaxy standards

• These collapse under their own self-gravity to form dark matter halos

• These dark matter halos are of course subject to gravitational interactions
and can merge under their mutual gravitational interaction to form larger
structures. The timescale for merger will be of order a few crossing times.

This process has been followed via numerical simulations such as the Illustris sim-
ulations which we have already referred to. However can we gain some analytical
insight into these processes ?

10.4.1 The Press-Schechter Mass Function
The analysis begin with the assumption that the primordial density perturbations
were Gaussian fluctuations. Thus, the phases of the waves which make up the den-
sity distribution were random and the probability distribution of the amplitudes
of the perturbations could be described by a Gaussian function :

p(�) = 1Ô
2fi‡(M)

exp
Ë

≠ �2

2‡2(M)
È

(10.59)

where � = ”fl/fl is the density contrast associated with the perturbations of mass
M and :

< �2 >=
e 3

”fl

fl

42 f
= ‡2(M) (10.60)

Assume that :

• Perturbations grow according to the linear theory until they reach a critical
density contrast �c, they evolved rapidly into bound objects with mass M

• The perturbations had a power-law power-spectrum P (k) = kn

• For the Einstein-de-Sitter model �0 = 1, �� = 1, so that the perturbations
grow as � Ã R Ã t2/3

For fluctuations of a given mass M , the fraction F (M) of those which became
bound at a particular epoch were those with amplitudes greater than �c :

F (M) = 1Ô
2fi‡(M)

⁄ Œ

�c

exp
C

≠ �2

2‡2(M)

D

d� = 1
2[1 ≠ �(tc)] (10.61)

where tc = �c/
Ô

2‡, and �(x) is the probability integral :

�(x) = 2Ô
fi

⁄ x

0
e≠t2 dt (10.62)
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We can express the mean-squared density contrast in terms of power-spectrum of
fluctuations :

‡2(M) =
e 3

”fl

fl

42 f
=< �2 >= AM≠(3+n)/3 (10.63)

where A is a constant. We can also express tc in terms of the mass distribution :

tc = �cÔ
2‡(M)

= �cÔ
2A1/2 M (3+n)/6 =

3
M

Nı

4(3+n)/6
(10.64)

where Mı = (2A/�2
c)3/(3+n).

Since the amplitude of the perturbation �(M) grew as �(M) Ã R Ã t2/3, it
follows that ‡2(M) = �2(M) Ã t4/3, therefore A Ã t4/3. Hence :

Mı Ã A3/(3+n) Ã t4/(3+n) (10.65)

and
Mı = Mı

0

3
t

t0

44/(3+n)
(10.66)

where Mı
0 is the value of Mı at the epoch t0.

The fraction of perturbation with masses in the range M to M + dM is :

dF = ≠ ˆF

ˆM
dM (10.67)

N.B.:The minus sign appearing because F is a decreasing function of increasing
M

In the linear regime, the mass of the perturbation is M = Í̄V , where Í̄ is the mean
density of the universe. Once the perturbation became non-linear, collapse ensued
and ultimately a bound object of mass M was formed. The space density per unit
mass of perturbations in the mass range M and M + dM that will become bound
is:

N(M) = dn(M)
dM

= ≠ fl̄

M

ˆF

ˆM
(10.68)

Since :
d�
dx

= 2Ô
fi

e≠x2 (10.69)

we find :

N(M) = 1
2
Ô

fi

3
1 + n

3

4
fl̄

M2

3
M

Mı

4(3+n)/6
exp

Ë
≠

3
M

Mı

4(3+n)/3 È
(10.70)
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This formalism results in only half the total mass density being condensed into
bound objects because of the fact that, according to this simple analysis, only the
positive density fluctuations developed into bound systems. The underlying cause
of this factor of two discrepancy is the fact that the above analysis is based upon the
linear theory of the growth of the perturbations. Once the perturbations developed
to large amplitude, mass was accreted from the vicinity of the perturbation and
N-body simulations show that most of the mass was indeed condensed into discrete
structures.
The Press-Schechter mass function can be written as :

N(M) = fl̄Ô
fi

“

M2

3
M

Mı

4“/2
exp

Ë
≠

3
M

Mı

4“ È
(10.71)

where “ = 1 + (n/3) and Mı = Mı(t0)(t/t0)4/3“
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11.1. THE FIRST OBJECTS 16411. Galaxy formation and
evolution, star formation
history of the Universe

In the beginning there were only
probabilities. The universe could
only come into existence if someone
observed it. It does not matter that
the observers turned up several
billion years later. The universe
exists because we are aware of it.

— Martin J. Rees

In this final chapter, we consider the formation of real galaxies and in particular
the evolution of the baryonic gas. While gravitation stills plays a central role, gas
heating and cooling now become our focus. In particular, we want to understand
the way in which gas is processed into stars and hence also planetary systems and
how this is linked to the overall cosmological evolution of the Universe.

11.1 The first objects
Following recombination, baryonic gas is neutral. As the Universe expands, a
number of things occur :

• The CMB cools proportional to 1/R hence is temperature is given by :

2.7 ◊ (1 + z)K (11.1)

• The baryonic gas not associated with self-gravitating objects cools adiabat-
ically and faster than this proportional to 1/R2 since its adiabatic index is
5/3

• The process of hierarchical structure formation is occurring all the time with
the merger of dark matter halos to form ever larger self-gravitating objects.
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At first however, there is no star formation or formation of black holes and AGN:
the Universe is dark apart from the CMB radiations, this is the Dark Ages. At
some point the density of baryonic gas in halos becomes su�ciently large that the
first stars and/or AGN form. This is a critical point in the history of the Universe:
it marks the end of the dark ages, and the start of the formation of the structure
we now observe. The first objects produce UV and/or X-Ray emission which starts
to reionise the neutral hydrogen outside of the densest regions. This epoch when
the first objects form is therefore called the epoch of reionisation (see chapter 1).
Importantly, it is observable via the 21 cm transition of hydrogen redshifted at
low frequencies corresponding to this epoch.

One piece of physics we need is the e�ect on the spin temperature of hydrogen
when we have a small flux of UV radiation. At high densities, collisions keep the
spin temperature equal to the kinetic temperature of the gas. As the density falls,
collisions become less important, and interaction with the photon field determines
the spin temperature. Initially this is the CMB, but once the first objects start to
form, a small optical/UV flux is present and this acts to excite neutral hydrogen
to an excited electronic energy state and as the hydrogen returns to the ground
state the probability of returning to either of the split levels of the ground state is
determined by the kinetic temperature of the gas. This is the so-called Wythousen-

Field e�ect and it results in a resonant coupling between the spin temperature and
the kinetic gas temperature again.
Recall that the spin temperature is directly related to the populations of the ground
state of hydrogen:

n2
n1

= g2
g1

exp
3

≠h‹21
kBT

4
(11.2)

The evolution of the spin temperature (Figure 11.1) can be understood as follows
:

• After recombination gas and the CMB cool adiabatically, the kinetic tem-
perature is therefore : TK < TCMB

• Initially, the density is large enough that collisions ensure : TS ≥ TK

• As density falls, CMB determines TS æ TCMB

• Overdensity in the dark matter collapse forming the first objects

• As first objects form, UV resonant scattering couples : TS to TK

• Gas temperature increases and so does TS due to heating from stars and
AGN
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Figure 11.1 : Evolution of the Spin Temperature. From Pritchard & Loeb 2010

• UV and X-Ray flux ionise the gas and TS æ 0

What we observe is the hydrogen seen against the CMB : we are in the Rayleigh-
Jeans limit and can therefore think in terms of the equivalent temperature of the
radiation. In fact, the observed brightness of the 21 cm line is given by :

Tb = 27xHI(1 + ”b)
3

Ts ≠ TCMB

TS

4 31 + z

10

41/2 3
ˆrvr

(1 + z)H(z)

4≠1
mK (11.3)

where xHI is the ionisation fraction, ”B is the baryon overdensity and the last term
is the peculiar velocity relative to the Hubble flow.

Of course the formation of the first object does not all occur at once, and is
not homogeneous and we expect an evolving structure of reionisation with Cosmic
epoch which we will be able to observe with the next generation of radio telescopes
currently being constructed.

11.2 Baryonic gas in dark matter halos
The raw material for star formation is the baryonic gas. We have seen how the
overdensity in the baryonic gas catches up that in the dark matter distribution :

�B = �D

3
1 ≠ z

z0

4
(11.4)

This leads to a simple picture of how we expect the baryonic gas to behave :
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• Baryonic gas should fall into pre-existing or growing dark-matter halos

• Typically infall velocities will be of order the free-fall speed (≥ GM/R), this
greatly exceeds the sound speed in the baryonic gas

• The gas therefore passes through a shock - a structure formation shock - and
is heated

11.2.1 Hydrostatic equilibrium
To proceed, we develop a model for the gas and dark matter :

• The matter forms a virially supported structure of radius :

Rv = 1
2Rm (11.5)

where Rm is the radius at turnaround (see previous chapter).

• The mean matter density in the halo is given by :

flv = �f fl̄(zf ) = �f fl0(1 + zf )3 (11.6)

where fl0 is the total matter density in the Universe at the current epoch and
�f ≥200 as we showed in the previous chapter.

• Assume further that the matter has a density structure given by the singular
isothermal sphere model - the "pressure support" for the dark matter we take
to be due to random motions of the non-interacting dark matter particles.
For the baryons, we have normal pressure support.

• The baryonic gas is in hydrostatic equilibrium in this potential well

The halo is characterised by its total mass - the virial mass Mv :

• dark matter mass : MD = �D
�M

Mv

• baryonic mass : MB = �B
�M

Mv

The virial radius of the halo is given by :

Rv =
3 3Mv

4fiflv

41/3
=

A
3Mv

4fi�f fl0

B1/3
(1 + zf )≠1 (11.7)

The equation of hydrostatic equilibrium for the baryonic gas is :

1
flg

dP

dr
= ≠GM(r)

r2 (11.8)
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Recall that for the singular isothermal sphere :

fl = a2

2fiGr2 (11.9)

M = 2a2r0
G

(11.10)

where the sphere was of mass M , radius r0 and a is the sound speed.
We can therefore write :

fl(r) = Mv

4fiRvr2 = flvR2
v

3r2 (11.11)

and hence :
M(r) = Mv

r

Rv
(11.12)

The equation of state of the baryonic gas is p = flgkT/µ where µ is the mean mass
per perticule (i.e. =0.69 for ionised primordial gas). Substituting into eq.11.8, we
find that the virial temperature for the gas is given by :

kTv = GMvµ

2Rv
Ã M2/3

v (1 + z) (11.13)

or Tv ¥ 3.6 ◊ 105
3

Mv

1012M§

42/3
(1 + z) K (11.14)

11.2.2 Halo growth
From our discussions in the previous chapter, we saw that the hierarchical structure
formation scenario suggests that halos continue to grow after their initial forma-
tion epoch by continually accreting dark-matter and gas via mergers of smaller
structures. Further we argued that the Press-Schecheter formalism gave a good
description of this process. Our picture therefore is one in which the halos are
continuing to evolve throughout their lifetime.

11.2.3 Gas cooling
This gas will cool. In chapter 2, we discussed this in some detail. At the virial
temperatures indicated by the above analysis and at lower temperature, the cooling
will be dominated by line emission. We are also in the low-density limit therefore
the cooling rate will be given by :

‘ = n2�(T ) ¥ n2 ÿ

i

gu,i

gl,i
Cul,ih‹i. exp (≠h‹i/kBT ) (11.15)

• For a line to be excited and contribute significantly to the sum : kT > h‹i
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• We approximate the exponential terms to approximately unity, therefore we
do the sum only over excited lines

• The collisional de-excitation rates (Cul) for the lines which are important
for cooling at these temperatures typically have a T ≠1/2 temperature depen-
dence:

‘ ¥ n2�0

3
T

T0

4≠1/2
(11.16)

The cooling time for the gas depends on radius and is given by :

tc(r) =
3
2flg(r)kBT‹/µ

n2�(T ) = 3µkB

2�0T 1/2
0

T 3/2
‹

flg
= A

T 3/2
‹

flg
(11.17)

We find the characteristic cooling time for the halo by averaging over all the
particles in the halo :

t̄c = 1
Mv

⁄ Rv

0
tc(r)flg4fir2 dr = A

Mv

⁄ Rv

0

T 3/2
v

flg
flg4fir2 dr (11.18)

= A

Mv
T 3/2

v
4
3fiR3

v = A
T 3/2

v

flv
(11.19)

Ã

1
M3/2

v (1 + zf )
23/2

(1 + zf )3 Ã Mv(1 + z)≠3/2 (11.20)

Inserting numerical values :

t̄c

yr
≥ 6.4 ◊ 1010

3
Mv

1012M§

4
(1 + zf )≠3/2 (11.21)

Cooling is therefore more e�cient in low-mass halos and those which form at
high-redshift.
If we equate the cooling time to the age of the universe at a given epoch, we find
a condition for all the baryonic gas to cool :

• To illustrate the result we take an Einstein-de-Sitter universe for which the
age of the Universe at redshift z is given by :

tu = 1.2 ◊ 1010(1 + zf )≠3/2 yr (11.22)

• if tc is much less than tu we expect all the gas to cool in this simple model -
this predicts a many small-mass halos where all the gas has been converted
to stars.
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• Note also they have the same redshift dependence therefore at all epochs the
low-mass objects cool more e�ciently

Since the gas density depends on radius, within each halo there is a radius inside
of which the cooling time is less than the Hubble time : this is called the cooling
radius. Outside of this radius, we do not expect gas cooling to be e�cient. The
cooling radius moves out with time.

11.2.4 Star Formation
Star formation happens in the cool gas which accumulates at the center of the
potential well. There will be continuous input to the reservoir of cold gas as the
warm gas at the virial temperature in the halo cools at a rate :

Ṁc,acc ¥
⁄

4fir2 f2
g fl2

g�(T )
3
2µkBT‹

dr (11.23)

where fg(r) is the fraction of gas remaining in the hot phase at any time at a given
radius.
As a consequence of angular momentum conservation, the accreting gas settles into
a disc. As we have seen in chapter 5, the gas in the disc becomes gravitationally
unstable, and therefore forms stars, when its surface density is:

‡ >
Ÿa0
fiG

(11.24)

Once the gas surface density is above this threshold, star formation will occur
following the Schmidt-Kennicutt relation.

11.3 The galaxy Luminosity Function and the galaxy
populations

We have seen in chapter 6 that the Luminosity Function follow a Schechter function
:

dn

dL
= �(L) = �ı

Lı
exp(≠L/Lı)

3
L

Lı

4–

(11.25)

Fits to the data give – ranging from -1.1 to -1.8 (depending on the redshift). In
chapter 9, however, we derived the form for the mass spectrum of halos via the
Press-Schechter formalism :

N(M) = 1
2
Ô

fi

3
1 + n

3

4
fl̄

M2

3
M

Mı

4(3+n)/6
exp

C

≠
3

M

Mı

4(3+n)/3D

(11.26)
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where the index n is the index of the power-spectrum of the fluctuations in the
early universe.
We can see straight away that there are inconsistencies : If we assume a constant
mass-to-light ratio then to match the observed data we require n = 3. However,
the Harrison-Zel’dovich spectrum has n = 1 and the reprocessed spectrum n = ≠3.
In either case, we predict a much steeper spectrum than observed.
In fact the problem is much worse than this. We have seen that cooling is very
e�cient in the low mass halos. In fact for halos not much less massive than that
of the Milky Way, the cooling time is less than the Hubble time. Therefore we
predict :

• Low mass halos should have processed all of the gas into stars and have done
so at early epochs. This would steepen the luminosity function even further.

• High-mass halos should still be gas rich and still actively forming stars in all
cases since the cooling is long.

In fact what we observe is :

• Elliptical galaxies in the local universe with little gas and evolved stellar
populations

• many small irregular galaxies which are very gas rich and still forming stars
- we do observe dwarf ellipticals but these do not dominate

• we observe many high-redshift galaxies with extremely large star formation
rates - these ULIRGs have inferred masses which mean they have to be the
precursors of the giant elliptical galaxies in the local Universe

The model we have outlined has problems. But there are also significant successes
:

• The shape of the luminosity function

• the formation redshifts for objects of di�erent mass

• the cooling argument suggests a change in behaviour in mass of order the
mass of the Milky Way - this is approximately where the break in the luminos-
ity function occurs. The star formation in higher-mass objects is suppressed
due to longer cooling times

• Very massive halos form very late and will have little cooling - the model
matches the observed clusters extremely well where we have very hot massive
systems which can take longer to be a single halo.
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11.4 Feedback
The key to solving these problems appears to be the inclusion of feedback. We
have already seen how feedback provides significant energy input (mostly from
supernovae) into the ISM. Including supernova feedback helps in two ways :

• The energy input heats the gas in the disc suppressing star formation

• The supernovae drive winds which eject cold gas from the disc and put it
back into the halo - if these are su�ciently energetic the gas is moved to
large radii. If gas is expelled beyond the cooling radius the feedback can halt
star formation

A second process is also e�ective in suppressing star formation in the lowest mass
halos and this is reionisation of the gas from photons forming UV background
produced by star formation and AGN activity.
More sophisticated models require numerical solution to follow the hot and cold
gas. The model in outline is as follows and is called a semi-analytic model :

• The process of halo growth is not taken from analytical models, but from
numerical N-body models. In fact the basic buildup of the halos follows well
the predictions of Press-Schechter, but the numerical approach includes the
sudden increases in virial mass and gas which occurs as halos merge in the
hierarchical structure formation scenario

• Halo structure is modelled much as we have described

• Cooling and star formation are modelled as we have described

• Supernova feedback is included by simply heating and ejecting the cold gas
into the halo. The supernova rate is determined from the IMF as the frac-
tion of stars with masses above 8M§ and the e�ciency is treated as a free
parameter

• Reionisation feedback is also included

• As mentioned in Chapter 7, recently feeedback from AGN has also been
included as an additional heating source - analytic models of jet-producing
AGN are incorporated into the model. The AGN are triggered because of
black hole growth at the centres of galaxies. This is currently modelled quite
simply. The e�ects are on the most massive galaxies for which the available
energy (proportional to ‘MBHc2) is largest.

Another test is to compare to the measured star formation rate density (i.e. average
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Figure 11.2 : Modelling the galaxy mass function with feedback included. The dashed
red line shows the expected shape of the mass function from the dark-halos mass function
(assuming constant mass-to-light ratio).From Mutch et al. (2013)
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Figure 11.3 : Star Formation Rate density over cosmic time. From Bouwens et al.
(2015)

star-formation rate per init volume in the Universe) as a function of redshift. We
don’t have time to discuss how the experiment is done, but the results are shown in
Figure 11.3. The general trend is that the average star formation density increases
by about a factor of 10 or 20 between z = 0 and z = 2. Currently the most
accepted scenario is that this increase of the star formation rate density in the
universe is primarily due to a much larger amount of gas in high-z galaxies, as
a consequence of gas cooling from the halo and from the intergalactic medium
; as a consequence of the Schmidt-Kennicutt relation, the larger amount of gas
results into a higher star-formation rate in each galaxy. Including the e�ect of
AGN feedback suppresses star formation still further especially at low-redshift
in the massive halos which otherwise now have cooling time comparable to the
Hubble flow. Figure 11.4 shows that the inlcusion of the various form of feedback
is succesfull in reproducing the mass function of galaxies over a large range of
redshift.

11.5 Comments and Conclusion
In this course, we have discussed our current understanding on structure formation
in the Universe, mostly based on advances made over the past 10-20 years. The
models we have developed have several successes (e.g. the galaxy mass function),
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Figure 11.4 : Evolution of the observed Galaxy Stellar Mass Function from z ≥ 0 to
z ≥3.25 in Hubble surveys. From McLeod et al. (2021)
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and leads to the emergence of a consistent picture. However several concerns arise
with these models :

• Each time we face a problem raised by observations, we have to include more
complex physics to the models to overcome it.

• Our current models can not explain the high-star formation rate objects seen
at high-redshift (e.g. >1000 M§/yr )

• All these models have free parameters that are still poorly understood (e.g.
the escape fraction of galaxies at high-redshift)

However, the future is very exiting with the arrival of several new observatories
whose main goals will be to address all the previous points. In December 2021, the
Ariane V rocket launched the James Webb Space Telescope, a 10 billion dollars
project, which will start observing in June this year. Moreover, within the next
decade, the European Extremely Large Telescope (ELT), the Square Kilometre
Array (SKA) and many other facilities will provide new, detailed information on
the properties of galaxies, and will drastically improve our understanding of the
mechanisms and physical processes responsible for galaxy formation, evolution and
transformation.
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A Examples 1

A.1
Show that integration of the transfer equation for a constant source function S‹

in a region extanding from s = 0 to s = L gives :

I‹ ≠ I‹(0) = (S‹ ≠ I‹(0))(1 ≠ e≠·‹ ) (27)

A.2
The ground state of neutral hydrogen is split into two states by the e�ects of
nuclear spin. It is usefull to describe the relative populations of the two states by
introducing an excitation temperature defined by :

n2
n1

= g2
g1

e≠h‹/kBTex (28)

where h‹=E2 ≠ E1.
A cloud of hydrogen with an excitation temperature Tex is observed against the
cosmic microwave background, assuming the excitation temperature of the cloud is
the same at all cosmological epochs, describe how observations of the cloud depend
on the redshift at which it is observed ?

A.3
A single spherical dust grain of radius a is illuminated by a planar wave of flux F .
What temperature will the grain reach in steady state if assuming it is a perfect
thermal absorber and emitter ? You may assume the only heating source for the

grain is the radiation field. A star of luminosity L‹ is surrounded by a cloud of
dust in which all the grains are spherical with a radius a and number density of
grains ng. The cloud has an inner radius ri which is much larger than radius of
the star.

1. Assuming perfect thermal absorption and emission for the individual grains,
and that the cloud is optically thin, find an expression for the grain temper-
ature at a radius r from the star. Hint : in steady state the total radiative

energy flow through any radius must be constant.

2. Now assume the more realistic case in which the e�ciency of absorption by
dust grains in the infrared depends on the frequency as Qabs Ã ‹— (typically
— ≥1.5-2.0). A good approximation in this case is that a grain only absorbs
at optical/UV wavelenghts and emits only in the infrared - explain why
this approximation is reasonable. Find how the dust temperatures scales
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with distance from the star in this case [assuming that the absorption cross
section of dust grains at optical/UV wavelengths can approximated with
their geometrical cross section].

A.4
A cloud of pure hydrogen of number density nH is illuminated by an O-type

star which radiates a total of Sı ionising photons per second. The ionisation cross
section ‡i can be assumed to be independent of frequency and –B is the total
recombination coe�cient. Typical values are : –B(T ) = 2 ◊ 10≠16T ≠3/4

e m3s≠1 ;
‡i=6.8◊10≠22m2 ; nH = 108m≠3 and Sı = 1049s≠1.

1. A simple model for the e�ect of the star on the surrounding gas is to assume
that within a sphere of radius r1 (Strömgren sphere) the gas is fully ionised
by the available ionising photons from the star producing an HII region or
nebula. Outside this sphere the gas is neutral. By considering the equations
for ionisation balance within this sphere show that :

r1 =
A

3
4fi

Sı

n2
H–B

B1/3
(29)

2. Estimate the radius of the Strömgren Sphere

3. A more sophisticated model aims to determine the ionisation fraction X =
ne/nH . Show that at any point in the nebula the ionisation fraction satisfies
:

X2

1 ≠ X
= FS

1
nH

‡i

–B
(30)

where FS is the flux of ionising photons. By approximating FS ≥ Sı/4fir2,
show that the approximation X ≥1 is justified for the case considered here.

A.5
Show that for a spherically symmetric self-gravitating cloud of gas with a poly-

tropic equation of state of the form p = Kfl� that the temperature is related to
the gravitational potential �g by :

kBT = 1 ≠ �
� µ�g (31)

A.6
Starting from the dispersion relation, define the Jeans length and hence de-

termine an expression for the Jeans mass. How does this expression relate to
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Bonnor-Ebert mass and the limiting mass determined from considering the limit-
ing stability of an isothermal cloud ?

A.7
Estimate the Jeans mass for the following : a giant molecular cloud complex ;

a dark cloud ; a dense core ; the warm neutral medium ; gas towards the centre of
a rich cluster.

A.8
Consider the virial equilibrium of an isothermal cloud of gas of mass M0, radius

r0 and temperature T0.
1. Assuming that the density within the cloud is constant, show that the grav-

itational potential energy is given by :

� = ≠3
5

GM2
0

r0
(32)

2. Neglecting external pressure, show that a necessary condition for collapse of
the cloud is :

r0
aT

>
Ô

5tff (33)

where aT =


kT/µ is the isothermal sound speed and tff ¥
Ò

r3
0/GM0 is

the free fall time. Interpret this result.

A.9
Show that the gravitational potential energy of the singular isothermal sphere

of mass M0 and radius r0 is given by :

� = ≠GM2
0

r0
(34)

Verify that the cloud is in virial equilibrium. In lectures, we defined a dimen-
sionless mass m = p1/2

0 G3/2M0/a4
T where p0 is the external pressure and aT is

the isothermal sound speed. Evaluate this dimensionless quantity for the singular
isothermal sphere. Use these results to comment on the stability of the singular
isothermal sphere.

A.10
A cloud of gas in hydrostatic equilibrium has a density distribution given by
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the singular isothermal sphere :

fl(r) = a2
T

2fiGr2 (35)

where aT is the isothermal sound speed. The cloud is perturbed and undergoes
inside out collapse in which the free-fall radius Rff propagates into the cloud at a
velocity aT . Find an expression for the accretion rate, Ṁ onto the growing proto-
star. How does the density vary within the free fall radius ?

A.11
Given the observed brightness distribution of a late-type spiral galaxy what

form would the rotation curve be expected to take in the absence of dark matter
?
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B Examples 2

B.1
A molecular cloud has formed stars with an Initial Mass Function ›(m) = dN/dm =
›0m≠◊ in the mass range ml < m < mu (with ml << mu), where dN is the number
of stars formed in the mass interval m and m+dm, and ›0 is a constant. Derive the
expression for the total mass of stars formed and for the total luminosity emitted
by stars, assuming they are all on the Main sequence and that L Ã M4. Discuss
the result in the case of a Salpeter IMF, i.e. ◊=2.35

B.2
For the potential �g = ≠A/r–, find expressions for the frequency and radius of
circular orbits as a function of the angular momentum per unit mass l. Find also
an expression for the epicyclic frequency. Show that closed orbits are possible in
a non-rotating frame when – = 1 and – = ≠2. Comment on these cases.

B.3
In the outer regions of two-armed spiral galaxy, we measure a flat rotation curve
with rotational speed of 190km/s. The spiral arms are seen to end at a radius
of 8.2kpc. Estimate the pattern speed. Useful astronomical units for the pattern
speed are km s≠1 kpc≠1

B.4
Estimate the Collisional relaxation time (in years) for : (a) stars in a globular
cluster ; (b) stars in a galaxy ; (c) galaxies in a cluster of galaxies.

B.5
It has been observationally found that the star formation rate (SFR) in (late type)
galaxies is proportional to their stellar mass : SFR = K ◊ Mı, where K is a
constant (at least within small redshift intervals). Assuming that the initial stellar
mass is M0, that the initial gas mass is negligible, and that galaxies are subject
to a constant inflow rate of gas �0, find how the stellar mass and gas fraction
evolve as a function of time. The result shows that at late evolutionary times this
model fails to describe the evolution of individual galaxies ; discuss why that is
the case and how the model can be improved to obtain a more realistic description
of galaxy evolution.
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B.6
A development of the closed-box model for the evolution of gas and metallicity in
a galaxy is to assume that there is infall of gas. One model assumes that the infall
rate is linked to the star formation rate and we take the infall rate to be equal to
–‹� where (1-–) is the fraction of gas returned to the ISM by supernovae, and ‹
is a constant. Show that the metallicity now has the following dependence on the
amount of gas g, the yield P and the total initial gas mass M0:

Z = P

‹

1
1 ≠

1 g

M0

2‹/(1≠‹)2
(36)

B.7
A supermassive black hole has been found at z = 7.5 (age of the Universe 800 Myr)
with a mass of M = 8 ◊ 108M§. Assume that the black hole seed out of which
this black hole has evolved formed at z = 20 (age of the Universe ≥200 Myr)
and assume the extreme case that, since its formation, the black hole has been
continuously accreting at the Eddington rate, with a radiative e�ciency ‘=0.1.
Find therefore the minimum mass of the black hole’s progenitor and discuss the
implications of your finding.

B.8
Show that the relaxation time scale for dynamical friction to act is :

tr = V 3

4fiG2Mfl ln � (37)

Hence show that the number of times two colliding galaxies pass through one
another before merging is proportional to V 4

B.9
Compare the integrated feedback from supernovae to that from the winds of su-
permassive O and B stars. Assume all stars with masses greater than 3M§ have
1000 km s≠1 winds and loose a total of 1M§, that all stars with masses greater
than 8M§ end their lives as a supernova, and the IMF is a Salpeter IMF with a
lower mass limit of 0.1 M§.
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B.10
(a) Show that in co-moving coordinates in the weak-field, low-velocity Euler’s
equation can be written as :

ˆv

ˆt
+ 1

R
v · Ò›v + Ṙ

R
v = ≠ 1

Rfl
Ò›P ≠ 1

R
Ò›�g (38)

for an appropriate choice of the gravitational potential.
(b) Show further that thus gravitational potential satisfies the Poisson equation

for the overdensity.

B.11
Why is dark matter crucial to understand how density fluctuations grow to

form galaxy-scale structures ? Starting from the coupled equations for the growth
of over densities in the dark matter and baryonic matter, show that when dark-
matter dominates over baryonic matter :

�B = �D

1
1 ≠ z

z0

2
(39)

B.12
Estimate the epoch for which a cluster of galaxies may form using the non-

linear collapse model developed in the lectures

B.13
If the peculiar velocity of halos remains constant with epoch, estimate how the

merger rate of halos varies with cosmic epoch if all of the halos are of equal mass
and are in place at some early epoch. Without detailed calculation, discuss how
the cosmic star formation rate might be expected to vary with cosmic epoch.
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